
Master the popular Zend Framework by following
along with the creation of a social networking

website for the video gaming community.

EASY
PHP WEBSITES WITH
THE ZEND FRAMEWORK

by W. Jason Gilmore

Easy PHP Websites with
the Zend Framework

W. Jason Gilmore

Easy PHP Websites with the Zend Framework 2

Easy PHP Websites with the Zend Framework
W. Jason Gilmore
Copyright © 2011 W. Jason Gilmore

Acknowledgements
Whew. Although I recently celebrated the tenth anniversary of the publication of my first book,
and have somehow managed to pen six more since, this process really isn't any easier than when
I put my very first words to paper back in 2000. Writing anything, let alone books about fast
moving technology, is a difficult, tedious, and often frustrating process. Yet paradoxically writing
this particular book has also a deeply gratifying experience, particularly because it's a major update
to the very first book published through my namesake company W.J. Gilmore, LLC back in early
2009. In the years since I've had the pleasure of communicating directly with thousands of readers
around the globe, and although the self-publishing process has been occasionally a rocky road, the
experience has been nothing short of extraordinary.

This particular project has been a difficult one, notably because it's actually comprised of two major
projects, including the book and the companion GameNomad project. Throughout, I've been very
keen on trying to do things the right way, both in my writing and the process used to develop a proper
Zend Framework website complete with an emphasis on models, testing, and other best practices
such as deployment.

In terms of acknowledgements, I'd like to make special mention of the people and teams who have
(most of them unknowingly) had a major influence on this book. Thanks to project lead Matthew
Weier O'Phinney and the rest of the Zend Framework team for putting together a truly fantastic
web framework solution. Sebastian Bergmann for his work on PHPUnit, and EdgeCase co-founder
and friend Joe O'Brien for his steadfast advocacy of test-driven development. Andreas Aderhold,
Michiel Rook, and the rest of the Phing team. Martin Fowler for his amazing book "Patterns of
Enterprise Application Architecture". The entire Doctrine team for what is easily one of the coolest
PHP technologies on the planet. Capistrano creator Jamis Buck. The GitHub crew. Bob Stayton for
his amazing patience and boundless Docbook knowledge. This list could literally go on for pages,
as the number of great programmers who have influenced my thinking particularly in recent years
seems infinite.

Last but certainly not least, I'd also like to thank you dear readers, each and every one of you mean
more to me than you'll ever know.

Jason Gilmore
Columbus, Ohio
March 8, 2011
wj@wjgilmore.com

Table of Contents
Introduction ... x

The Web Ain't What It Used to Be .. x
Book Contents ... x

Chapter 1. Introducing Framework-Driven Development ... xi
Chapter 2. Creating Your First Zend Framework Project ... xi
Chapter 3. Managing Layouts, Views, CSS, Images, and JavaScript xi
Chapter 4. Managing Configuration Data ... xi
Chapter 5. Creating Web Forms with Zend_Form .. xi
Chapter 6. Talking to the Database with Zend_Db .. xii
Chapter 7. Integrating Doctrine 2 .. xii
Chapter 8. Managing User Accounts .. xii
Chapter 9. Creating Rich User Interfaces with JavaScript and Ajax xii
Chapter 10. Integrating Web Services .. xiii
Chapter 11. Unit Testing Your Zend Framework Application xiii
Chapter 12. Deploying Your Website with Capistrano .. xiii

Reader Expectations ... xiii
About the Companion Project .. xiv
About the Author ... xiv
Contact the Author ... xiv

1. Introducing Framework-Driven Development ... 15
Introducing the Web Application Framework ... 15

Frameworks Support the Development of Dynamic Websites 16
Frameworks Alleviate Overhead Associated with Common Activities 19
Frameworks Provide a Variety of Libraries .. 21

Test Your Knowledge .. 23
2. Creating Your First Zend Framework Project ... 24

Downloading and Installing the Zend Framework ... 24
Configuring the zf Tool ... 25

Creating Your First Zend Framework Project ... 26
Adjust Your Document Root ... 26
Navigate to the Project Home Page .. 29

The Project Structure ... 30
Extending Your Project with Controllers, Actions, and Views 31

Creating Controllers .. 32
Creating Actions ... 33
Creating Views ... 33

Easy PHP Websites with the Zend Framework iii

Passing Data to the View ... 34
Retrieving GET and POST Parameters ... 34

Retrieving GET Parameters .. 35
Retrieving POST Parameters ... 36

Creating Custom Routes ... 36
Defining URL Parameters .. 38

Testing Your Work ... 39
Verifying Controller Existence .. 40
Verifying Action Existence ... 40
Verifying a Response Status Code ... 41

Test Your Knowledge .. 41
3. Managing Layouts, Views, CSS, Images and JavaScript ... 42

Managing Your Website Layout .. 42
Using Alternative Layouts .. 44
Disabling the Layout ... 45

Managing Views ... 45
Overriding the Default Action View ... 45
Disabling the View ... 46

View Helpers ... 46
Managing URLs ... 46
Creating Custom View Helpers ... 48

Managing Images .. 51
Managing CSS and JavaScript ... 51
Testing Your Work ... 51

Verifying Form Existence ... 52
Verifying the Page Title ... 52
Testing a PartialLoop View Helper .. 53

Test Your Knowledge .. 53
4. Managing Configuration Data .. 55

Introducing the Application Configuration File ... 55
Setting the Application Life Cycle Stage ... 57
Accessing Configuration Parameters ... 57

Accessing Configuration Data From a Controller Action .. 57
Using the Controller's init() Method to Consolidate Code ... 58
Accessing Configuration Parameters Globally Using Zend_Registry 58

Test Your Knowledge .. 59
5. Creating Web Forms with Zend_Form .. 60

Creating a Form with Zend_Form .. 60

Easy PHP Websites with the Zend Framework iv

Rendering the Form .. 63
Passing Options to the Constructor ... 66

Processing Form Contents .. 66
Determining if the Form Has Been Submitted .. 67
Validating Form Input ... 68
Completing the Process .. 74

Populating a Form .. 77
Populating Select Boxes ... 78

Testing Your Work ... 79
Making Sure the Contact Form Exists .. 79
Testing Invalid Form Values ... 79
Testing Valid Form Values ... 82

Test Your Knowledge .. 83
6. Talking to the Database with Zend_Db ... 84

Introducing Object-Relational Mapping ... 86
Introducing Zend_Db ... 88

Connecting to the Database .. 88
Creating Your First Model ... 89
Querying Your Models .. 91

Querying by Primary Key .. 91
Querying by a Non-key Column .. 91
Retrieving Multiple Rows ... 92
Custom Search Methods in Action ... 93
Counting Rows ... 93
Selecting Specific Columns .. 94
Ordering the Results by a Specific Column ... 94
Limiting the Results .. 94
Executing Custom Queries ... 95
Querying Your Database Without Models ... 95

Creating a Row Model ... 96
Inserting, Updating, and Deleting Data ... 97

Inserting a New Row ... 97
Updating a Row ... 98
Deleting a Row .. 98

Creating Model Relationships ... 98
Sorting a Dependent Rowset ... 102

JOINing Your Data ... 102
Join Scenarios .. 102

Easy PHP Websites with the Zend Framework v

Creating and Executing Zend_Db Joins ... 105
Creating and Managing Views ... 106

Creating a View .. 106
Adding the View to the Zend Framework .. 107
Deleting a View .. 108
Reviewing View Creation Syntax ... 108

Paginating Results with Zend_Paginator .. 109
Create the Pagination Query .. 109
Using the Pagination Query .. 110
Adding the Pagination Links ... 112

Test Your Knowledge .. 113
7. Chapter 7. Integrating Doctrine 2 ... 114

Introducing Doctrine .. 115
Introducing the z2d2 Project ... 116
Key Configuration Files and Parameters .. 117
Building Persistent Classes ... 118

Generating and Updating the Schema .. 120
Querying and Manipulating Your Data .. 121

Inserting, Updating, and Deleting Records ... 121
Finding Records .. 123

Managing Entity Associations ... 125
Configuring Associations .. 126

Defining Repositories ... 129
Testing Your Work ... 130

Testing Class Instantiation .. 130
Testing Record Addition and Retrieval .. 130

Test Your Knowledge .. 131
8. Managing User Accounts .. 132

Creating the Accounts Database Table .. 132
Creating New User Accounts .. 134

Sending E-mail Through the Zend Framework .. 137
Confirming the Account ... 139
Creating the User Login Feature .. 141
Determining Whether the User Session is Valid .. 144
Creating the User Logout Feature ... 147
Creating an Automated Password Recovery Feature ... 147
Testing Your Work ... 152

Making Sure the Login Form Exists ... 152

Easy PHP Websites with the Zend Framework vi

Testing the Login Process ... 153
Ensuring an Authenticated User Can Access a Restricted Page 154
Testing the Account Registration Procedure ... 154

Test Your Knowledge .. 155
9. Creating Rich User Interfaces with JavaScript and Ajax .. 156

Introducing JavaScript .. 157
Syntax Fundamentals ... 158

Introducing the Document Object Model ... 165
Introducing jQuery .. 167

Installing jQuery ... 167
Managing Event Loading .. 168
DOM Manipulation ... 169
Event Handling with jQuery .. 173

Introducing Ajax ... 175
Passing Messages Using JSON .. 175
Validating Account Usernames .. 176

Test Your Knowledge .. 179
10. Integrating Web Services ... 180

Introducing Amazon.com's Product Advertising API .. 181
Joining the Amazon Associates Program ... 181
Creating Your First Product Link ... 182
Creating an Amazon Product Advertising API Account .. 182
Retrieving a Single Video Game .. 183
Setting the Response Group .. 184
Displaying Product Images ... 185
Putting it All Together ... 186
Searching for Products ... 188
Executing Zend Framework Applications From the Command Line 189

Integrating the Google Maps API ... 193
Introducing the Google Maps API .. 193
Saving Geocoded Addresses .. 199
Finding Users within a Specified Radius ... 200

Test Your Knowledge .. 201
11. Unit Testing Your Project .. 202

Introducing Unit Testing ... 202
Readying Your Website for Unit Testing ... 203

Installing PHPUnit .. 203
Configuring PHPUnit ... 204

Easy PHP Websites with the Zend Framework vii

Creating the Test Bootstrap ... 204
Testing Your Controllers .. 205

Executing a Single Controller Test Suite ... 207
Testing Your Models ... 207
Creating Test Reports .. 209

Code Coverage ... 210
Test Your Knowledge .. 212

12. Deploying Your Website with Capistrano ... 213
Configuring Your Environment .. 213

Installing a Version Control Solution .. 214
Configuring Public-key Authentication .. 217

Deploying Your Website .. 219
Readying Your Remote Server .. 223
Deploying Your Project .. 224
Rolling Back Your Project .. 224
Reviewing Commits Since Last Deploy ... 224

Test Your Knowledge .. 225
Conclusion ... 225

A. Test Your Knowledge Answers ... 226
Chapter 1 ... 226
Chapter 2 ... 226
Chapter 3 ... 227
Chapter 4 ... 228
Chapter 5 ... 228
Chapter 6 ... 229
Chapter 7 ... 229
Chapter 8 ... 230
Chapter 9 ... 231
Chapter 10 ... 231
Chapter 11 ... 232
Chapter 12 ... 232

List of Figures
2.1. A Zend Framework Project's Home Page .. 30
3.1. Using the Zend Framework's layout feature ... 44
5.1. Creating a form with Zend_Form ... 64
5.2. Removing the default Zend_Form decorators ... 65
5.3. Controlling form layout is easy after all! ... 66
5.4. Displaying a validation error message ... 69
5.5. Notifying the user of an invalid e-mail address ... 71
5.6. Displaying a validation error message ... 73
5.7. Using the flash messenger .. 77
5.8. GameNomad's Contact Form .. 80
6.1. Building a game profile page using Zend_Db ... 87
6.2. Determining whether an account's friend owns a game ... 103
8.1. Greeting an authenticated user ... 147
8.2. Recovering a lost password ... 148
8.3. The password recovery e-mail ... 150
9.1. Creating a JavaScript alert window ... 157
9.2. Using a custom function ... 160
9.3. Executing an action based on some user event .. 162
9.4. Validating form fields with JavaScript .. 165
9.5. Triggering an alert box after the DOM has loaded ... 169
10.1. Assembling a video game profile ... 186
10.2. Centering a Google map over Columbus, Ohio .. 194
10.3. Plotting area GameStop locations ... 197
11.1. Viewing a web-based test report ... 210
11.2. A Doctrine entity code coverage report .. 211

List of Tables
3.1. Useful View Helpers ... 48
5.1. Useful Zend_Form Validators ... 69
9.1. Useful JavaScript Event Handlers ... 162
9.2. jQuery's supported event types .. 173

Introduction
The Web Ain't What It Used to Be

The World Wide Web's technical underpinnings are incredibly easy and intuitive to understand,
a characteristic which has contributed perhaps more than anything else to this revolutionary
communication platform's transformational growth over the past 15 years or so. Its also this trait
which I believe have led so many developers horribly astray, because while the web's plumbing
remains decidely free of complexity even today, the practice of developing web sites has evolved into
something decidely more complex than perhaps ever would have been imagined even a decade ago.

Despite this transformation, far too many developers continue to treat web development as something
separate from software development. Yet with the Web having become an indispensable part of
much of the planet's personal and business affairs, it is no longer acceptable to treat an enterprise-
level website as anything but an application whose design, development, deployment, and lifecycle
is governed by rigorous process. Embracing a rigorous approach to designing, developing, testing
and deploying websites will make you a far more productive and worry-free developer, because your
expectations of what should be and realization of what is are identical.

If you quietly admit to not having yet embraced a formalized development process, I can certainly
empathize. For years I too grappled with tortuous code refactoring, unexpected side effects due to
ill-conceived updates, and generally found the testing and deployment process to be deeply steeped
in voodoo. After having been burned by yet another problematic bit of code, a few years ago I
decided to step back from the laptop and take the time to learn how to develop software rather
than merely write code. One of the first actionable steps I took in this quest was to embrace what
was at the time a fledgling project called the Zend Framework. This step served as the basis for
reevaluating practically everything I've come to know about the software development process, and
it has undoubtedly been the most reinvigorating experience of my professional career.

If you too have grown weary of writing code in a manner similar to Shakespeare's typing monkeys,
hoping that with some luck a masterpiece will eventually emerge, and instead want to start
developing software using the patterns, practices, and strategies of developers who seem to be unable
to do any wrong, you'll find the next 12 chapters not only transformational, but rather fun.

Book Contents

This book introduces several of the most commonly used features of the Zend Framework,
organizing these topics into the following twelve chapters:

Easy PHP Websites with the Zend Framework

Chapter 1. Introducing Framework-Driven Development

It's difficult to fully appreciate the convenience of using a tool such as the Zend Framework without
understanding the powerful development paradigms upon which such tools are built. In this chapter
I'll introduce you to several key paradigms, notably the concepts of convention over configuration,
the power of staying DRY, and problem solving using design patterns.

Chapter 2. Creating Your First Zend Framework Project

In this chapter you'll learn how to install and configure the Zend Framework, and use the framework's
command line tool to create your first Zend Framework-powered website. You'll also learn how
to expand the website by creating and managing key application components such as controllers,
actions, and views.

Chapter 3. Managing Layouts, Views, CSS, Images, and
JavaScript

Modern website user interfaces are an amalgamation of templates, page-specific layouts, CSS files,
images and JavaScript code. The Zend Framework provides a great number of features which
help reduce the complexities involved in effectively integrating and maintaining these diverse
components, and in this chapter you'll learn all about them.

Chapter 4. Managing Configuration Data

Most websites rely upon a great deal of configuration data such as database connection parameters,
directory paths, and web service API keys. The challenges of managing this data increases
when you consider that it will often change according to your website's lifecycle stage (for
instance the production website's database connection parameters will differ from those used
during development). The Zend Framework's Zend_Config component was created to address
these challenges in mind, and in this chapter you'll learn how to use this component to maintain
configuration data for each stage of your website's lifecycle.

Chapter 5. Creating Web Forms with Zend_Form

HTML forms are one of the most commonplace features found on a website, yet their implementation
is usually a chaotic and undisciplined process. The Zend Framework's Zend_Form component brings
order to this important task, providing tools for not only auto-generating your forms, but also making
available clear procedures for validating and processing the data. In this chapter you'll learn how

Easy PHP Websites with the Zend Framework

Zend_Form can remove all of the implementational vagaries from your form construction and
processing tasks.

Chapter 6. Talking to the Database with Zend_Db

These days it's rare to create a website which doesn't involve some level of database integration.
Although PHP makes it easy to communicate with a database such as MySQL, this can be a double-
edged sword because it often leads to a confusing mishmash of PHP code and SQL execution
statements. Further, constantly donning and removing the PHP developer and SQL developer hats
can quickly become tiresome and error prone. The Zend Framework's MVC implementation and
Zend_Db component goes a long way towards removing both of these challenges, and in this chapter
you'll learn how.

Chapter 7. Integrating Doctrine 2

The Zend_Db component presents a significant improvement over the traditional approach to
querying databases using PHP, however an even more powerful solution named Doctrine 2 is now at
your disposal. A full-blown object-relational mapping solution, Doctrine provides developers with
an impressive array of features capable of not only interacting with your database using an object-
oriented interface, but can also make schema management almost enjoyable.

Chapter 8. Managing User Accounts

Whether you're building an e-commerce site or would prefer readers of your blog register before
adding comments, you'll need an effective way to create user accounts and allow users to easily
login and logout of the site. Further, you'll probably want to provide users with tools for performing
tasks such as changing their password. Accomplishing all of these tasks is easily done using the
Zend_Auth component, and in this chapter I'll show you how to use Zend_Auth to implement all
of these features.

Chapter 9. Creating Rich User Interfaces with JavaScript and
Ajax

What's a website without a little eye candy? In a mere five years since the term was coined, Ajax-
driven interfaces have become a mainstream fixture of websites large and small. Yet the challenges
involved in designing, developing and debugging Ajax-oriented features remain. In this chapter I'll
introduce you to JavaScript, the popular JavaScript library jQuery, and show you how to integrate a
simple but effective Ajax-based username validation feature into your website.

Easy PHP Websites with the Zend Framework

Chapter 10. Integrating Web Services

Every web framework sports a particular feature which sets it apart from the competition. In the
Zend Framework's case, that feature is deep integration with many of the most popular web services,
among them Amazon's EC2, S3, and Affiliate services, more than ten different Google services
including Google Calendar and YouTube, and Microsoft Azure. In this chapter I'll introduce you to
Zend_Service_Amazon (the gateway to the Amazon Product Advertising API), a Zend Framework
component which figures prominently into GameNomad, and also show you how easy it is to
integrate the Google Maps API into your Zend Framework application despite the current lack of a
Zend Framework Google Maps API component.

Chapter 11. Unit Testing Your Zend Framework Application

Most of the preceding chapters include a special section devoted to explaining how to use PHPUnit
and the Zend Framework's Zend_Test component to test the code presented therein, however because
properly configuring these tools is such a source of pain and confusion, I thought it worth devoting
an entire chapter to the topic.

Chapter 12. Deploying Your Website with Capistrano

Lacking an automated deployment process can be the source of significant pain, particularly as you
need to update the production site to reflect the latest updates and bug fixes. In this chapter I'll show
you how to wield total control over the deployment process using a great deployment tool called
Capistrano.

Reader Expectations

You presumably expect that I possess a certain level of knowledge and experience pertaining to
PHP and the Zend Framework. The pages which follow will determine whether I've adequately met
those expectations. Likewise, in order for you to make the most of the material in this book, you
should possess a basic understanding of the PHP language, at least a conceptual understanding of
object-oriented programming and preferably PHP's particular implementation, and a basic grasp of
Structured Query Language (SQL) syntax, in addition to fundamental relational database concepts
such as datatypes and joins.

If you do not feel comfortable with any of these expectations, then while I'd imagine you will still
benefit somewhat from the material, chances are you'll have a lot more to gain after having read my
book Beginning PHP and MySQL, Fourth Edition, which you can purchase from WJGilmore.com.

Easy PHP Websites with the Zend Framework

About the Companion Project

Rather than string together a bunch of contrived examples, an approach which has become
all too common in today's programming books, you'll see that many examples are based on
a social networking website for video gamers. This website is called GameNomad (http://
gamenomad.wjgilmore.com), and it embodies many of the concepts and examples found throughout
the book. All readers are able to download all of the GameNomad source code at WJGilmore.com.
Once downloaded, unarchive the package and read the INSTALL.txt file to get started.

Like any software project, I can guarantee you'll encounter a few bugs, and encourage you to e-
mail your findings to support@wjgilmore.com. Hopefully in the near future I'll make the project
available via a private Git repository which readers will be able to use in order to conveniently obtain
the latest updates.

About the Author

W. Jason Gilmore is a developer, trainer, consultant, and author of six books, including the
bestselling "Beginning PHP and MySQL, Fourth Edition" (Apress, 2010), "Easy PHP Websites
with the Zend Framework" (W.J. Gilmore LLC, 2011), and "Easy PayPal with PHP" (W.J. Gilmore
LLC, 2009). He is a regular columnist for Developer.com, JS Magazine, and PHPBuilder.com, and
has been published more than one hundred times over the years within leading online and print
publications. Jason has instructed hundreds of developers in the United States and Europe.

Jason is co-founder of the popular CodeMash Conference http://www.codemash.org), and was a
member of the 2008 MySQL conference speaker selection board.

Contact the Author

I love responding to reader questions and feedback. Get in touch at wj@wjgilmore.com

Chapter 1. Introducing
Framework-Driven Development
Although the subject of web development logically falls under the larger umbrella of computer
science, mad science might be a more fitting designation given the level of improvisation,
spontaneity and slapdashery which has taken place over the last 15 years. To be fair, the World Wide
Web doesn't have a stranglehold on the bad software market, however in my opinion bad code and
practices are so prevalent within the web development community is because many web developers
tend not to identify a website as software in the first place.

This misinterpretation is paradoxical, because websites are actually software of a most complex type.
User expectations of perpetual uptime, constant exploitation attempts by a worldwide audience of
malicious intruders, seamless integration with third-party web services such as Amazon, Facebook
and Twitter, availability on all manner of platforms ranging from the PC to mobile devices and now
the iPad, and increasingly complex domain models as businesses continue to move sophisticated
operations to the web are all burdens which weigh heavily upon today's web developer.

To deal with this growing complexity, leading developers have devoted a great deal of time and effort
to establishing best practices which help the community embrace a formalized and rigorous approach
to website development. The web application framework is the embodiment of these best practices,
providing developers with a foundation from which a powerful, secure, and scalable website can
be built.

Introducing the Web Application Framework

While I could come up with my own definition of a web application framework (heretofore called
a web framework), it would likely not improve upon Wikipedia's version (http://en.wikipedia.org/
wiki/Web_application_framework):

A web application framework is a software framework that is designed to support
the development of dynamic websites, web applications and web services. The
framework aims to alleviate the overhead associated with common activities
used in web development. For example, many frameworks provide libraries for
database access, templating frameworks and session management, and often
promote code reuse.

http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Web_application_framework

Easy PHP Websites with the Zend Framework 16

That's quite a mouthful. I'll spend the remainder of this chapter dissecting this definition in some
detail in order to provide you with a well-rounded understanding of what solutions such as the Zend
Framework have to offer.

Frameworks Support the Development of Dynamic Websites

Dynamic websites, like any software application, are composed of three components: the data, the
presentation, and the logic. In the lingo of web frameworks, these components are referred to as the
model, view, and controller, respectively. Yet most websites intermingle these components, resulting
in code which might be acceptable for small projects but becomes increasingly difficult to manage
as the project grows in size and complexity. As you grow the site, the potential for problems due to
unchecked intermingling of these components quickly becomes apparent:

• Technology Shifts: MySQL has long been my preferred database solution, and I don't expect that
sentiment to change anytime soon. However, if another more attractive database comes along one
day, it would be foolhardy to not eventually make the switch. But if a site such as GameNomad
were created with little regard to tier separation, we'd be forced to rewrite every MySQL call and
possibly much of the SQL to conform to the syntax supported by the new database, in the process
potentially introducing coding errors and breaking HTML output due to the need to touch nearly
every script comprising the application.

• Presentation Maintainability and Flexibility: Suppose you've stretched your graphical design
skills to the limit, and want to hire a graphic designer to redesign the site. Unfortunately, this
graphic designer knows little PHP, and proceeds to remove all of those "weird lines of text" before
uploading the redesigned website, resulting in several hours of downtime while you recover the
site from a backup. Furthering your problems, suppose your site eventually becomes so popular
that you decide to launch a version optimized for handheld devices. This is a feature which would
excite users and potentially attract new ones, however because the logic and presentation are so
intertwined it's impossible to simply create a set of handheld device-specific interfaces and plug
them into the existing code. Instead, you're forced to create and subsequently maintain an entirely
new site!

• Code Evolution: Over time it's only natural your perspective on approaches to building websites
will evolve. For instance, suppose you may initially choose to implement an OpenID-based
authentication solution, but later decide to internally host the authentication mechanism and data.
Yet because the authentication-specific code is sprinkled throughout the entire website, you're
forced to spend a considerable amount of time updating this code to reflect the new authentication
approach.

Easy PHP Websites with the Zend Framework 17

• Testability: If I had a dollar for every time I wrote a bit of code and pressed the browser reload
button to see if it worked properly, this book would have been written from my yacht. Hundreds of
dollars would have piled up every time I determined if a moderately complex form was properly
passing data, verified that data retrieved from a SQL join was properly format, and ensured that a
user registration feature sent the new registrant a confirmation e-mail. Sound familiar? The time,
energy, and frustration devoted to this inefficient testing strategy can literally add weeks to the
development schedule, not to mention make your job a lot less fun.

So how can you avoid these universal problems and hassles? The solution is to separate these
components into distinct parts (also known as tiers), and write code which loosely couples these
components together. By removing the interdependencies, you'll create a more manageable, testable,
and scalable site. One particularly popular solution known as an MVC architecture provides you
with the foundation for separating these tiers from the very beginning of your project!

Let's review the role each tier plays within the MVC architecture.

The Model

You can snap up the coolest domain name and hire the world's most talented graphic designer, but
without content, your project is going nowhere. In the case of GameNomad that data is largely user-
and game-related. To manage this data, you'll logically need to spend some time thinking about and
designing the database structure. But there's much more to effectively managing an application's
data than designing the schema. You'll also need to consider characteristics such as session state,
data validation, and other data-related constraints. Further, as your schema evolves over time, it
would be ideal to minimize the number of code modifications you'll need to make in order to
update the application to reflect these schema changes. The model tier takes these sorts of challenges
into account, acting as the conduit for all data-related tasks, and greatly reducing the application's
underlying complexity by centralizing the data-specific code within well-defined classes.

The View

The second tier comprising the MVC architecture is the view. The view is responsible for formatting
and displaying the website's data and other visual elements, including the CSS, HTML forms,
buttons, logos, images, and other graphical features. Keep in mind that a view isn't restricted to solely
HTML, as the view is also used to generate RSS, Flash, and printer-friendly formats. By separating
the interface from the application's logic, you can greatly reduce the likelihood of mishaps occurring
when the graphic designer decides to tweak the site logo or a table layout, while also facilitating
the developer's ability to maintain the code's logical underpinnings without getting lost in a mess of
HTML and other graphical assets.

Easy PHP Websites with the Zend Framework 18

Try as one may, a typical view will almost certainly not be devoid of PHP code. In fact, as you'll see in
later chapters, even when using frameworks you'll still use simple logic such as looping mechanisms
and if statements to carry out various tasks, however the bulk of the complex logic will be hosted
within the third and final tier: the controller.

The Controller

The third part of the MVC triumvirate is the controller. The controller is responsible for processing
events, whether initiated by the user or some other actor, such as a system process. You can think
of the controller like a librarian, doling out information based on a patron's request, be it the date of
Napoleon's birth, the location of the library's collection of books on postmodern art, or directions to
the library. To do this, the librarian reacts to the patron's input (a question), and forms a response
thanks to information provided by the model (in this case, either her brain, the card catalog, or
consultation of a colleague). In answering these questions, the librarian may dole out answers in a
variety of formats (which in MVC parlance would comprise the view), accomplished by talking to
the patron in person, responding to an e-mail, or posting to a community forum.

A framework controller operates in the same manner as a librarian, accepting incoming requests,
acquiring the necessary resources to respond to that request, and returning the response in an
appropriate format back to the requesting party. As you've probably already deduced, the controller
typically responds to these requests by invoking some level of logic and interacting with the model to
produce a response (the view) which is formatted and returned to the requesting party. This process
is commonly referred to as an action, and they're generally referred to as verbs, for example "add
game", "find friend", or "contact administrator".

MVC in Action

So how do these three components work in unison to power a website? Consider a scenario
in which the user navigates to GameNomad's video game listing for the PlayStation 3 console
(http://gamenomad.wjgilmore.com/games/console/ps3). The model, view, and controller all play
important roles in rendering this page. I'll break down the role of each in this section, interweaving
the explanation with some Zend Framework-specific behavior (although the process is practically
identical no matter which MVC-based web framework solution you use):

• The Controller: Two controllers are actually involved with most requests. The front controller is
responsible for routing incoming requests to the appropriate application controller which is tasked
with responding to requests associated with a specific URL. The controller naming convention
and class structure usually (but is not required to) corresponds with the URL structure, so the
URL http://gamenomad.wjgilmore.com/games/console/ps3 maps to an application controller

Easy PHP Websites with the Zend Framework 19

named Games. Within the Games controller you'll find a method (also known as an action) named
console which is passed the parameter ps3. The console action is responsible for retrieving a list
of video games associated with the specified console, in this case the PS3, and then passing that
list to the associated view. The video games are retrieved by way of the model, discussed next.

• The Model: As you'll learn in later chapters, GameNomad's model consists of a number of object-
oriented classes, each representative of a data entity such as a gaming console, video game, or
user account. Two models are actually required to retrieve a list of games supported on the PS3
console, namely Console and Game. By using the Console class to create an object representative
of the PS3 console, we can in turn retrieve a list of all video games associated with that console,
making this list available to the controller as an array of Game objects. Each Game object contains
attributes which are named identically to the associated database table's columns. Therefore the
Game object includes attributes named name, price, and description, among others. Don't worry
about the mechanics behind this process, as you'll be introduced to this subject in great detail in
later chapters.

• The View: Once the controller receives the array of Game objects back from the model, it will
pass this array to the view, which will then iterate over the objects and embed them into the view
template. Doing this will logically require a bit of PHP syntax, but only a looping mechanism
such as a foreach statement and basic object-oriented syntax.

Frameworks Alleviate Overhead Associated with Common
Activities

Web frameworks were borne from the understanding that all dynamic websites, no matter their
purpose, share common features which can be abstracted into generally reusable implementations.
For instance, almost every website will need to validate user input, communicate with a data source
such as a relational database, and rely upon various configuration settings such as mail server
addresses and other data such as API developer keys. A web framework removes many of the design
decisions you'll need to make regarding how to approach data validation and configuration data
management by embracing two powerful paradigms known as convention over configuration and
staying DRY.

Convention Over Configuration

The number of decisions a developer must make when starting a new project is seemingly endless.
Conclusions must be drawn regarding how approaches to tasks such as manage templates and
configuration parameters, validate forms, and cache data and static pages, to say nothing of

Easy PHP Websites with the Zend Framework 20

more mundane decisions such as file- and database table-naming conventions, documentation
processes, and testing policy. Making matters worse, it's not uncommon for a developer to vary the
implementation of these decisions from one project to the next, introducing further chaos into the
development and maintenance process.

Frameworks attempt to reduce the number of decisions a developer has to make throughout the
development process by advocating an approach of convention over configuration. In reducing
the number of decisions you have to make by offering implementation solutions right out of the
box, you'll logically have more time to spend building those features which are specific to your
application's problem domain. As you'll learn in the chapters that follow, the Zend Framework
removes the bulk of the decisions you'll need to make regarding all of the matters mentioned in the
previous paragraph. I believe this alleviation of uncertainty is one of the strongest points to consider
when weighing the advantages of a framework against creating a website from scratch. Ask yourself,
should you be spending valuable time doing the middling tasks which will invariably come up every
time you set out to create a new website, or should you simply let a framework do the thinking for
you in those regards while you concentrate on building the most compelling website possible? I
think you know the answer.

Staying DRY

Avoiding repetition within your code, also known as staying DRY (Don't Repeat Yourself), is one of
programming's oldest and most fundamental tenets, with constructs such as the function having made
an appearance within even the earliest languages. Frameworks embrace this concept on multiple
levels, notably not only allowing you to reduce redundancy within the application logic, but also
within the presentation. For instance, the Zend Framework offers a feature known as a view helper
which operates in a manner similar to a function, and is useful for eliminating redundancy within
your page templates.

As an example, GameNomad allows registered users to assign a star rating to various technology
products. This starred rating is displayed as a series of one to five star icons, and appears not only on
the product detail page, but also as a sortable visual cue within category listings. The average rating
will be stored in the database as an integer value, meaning some logic is required for converting that
integer value into a corresponding series of star icons. While the logic is simplistic, it's nonetheless
significant enough that avoiding repeating it throughout your application would be ideal. You can
avoid the repetition by bundling this logic within a view helper, and then referencing that view
helper much like you would a PHP function within your presentational code. Contrast this with
redundantly embedding the logic wherever needed within the website, and then struggling to update
each repetitive instance following a decision to update the location of your website images. You'll
learn how to create and implement both action and view helpers in Chapter 3.

Easy PHP Websites with the Zend Framework 21

Frameworks Provide a Variety of Libraries

Beyond helping you to quickly surpass the myriad of implementation decisions which need to be
made with the onset of each project, many mainstream frameworks provide a wide assortment of
libraries which assist in the implementation of key features such as database integration and user
authentication. In this section I'll provide three examples of the power these libraries can bring to
your projects.

Database Integration

The practice of repeatedly jumping from one language such as PHP to SQL within a web page is
a rather inefficient affair. For instance, the following sequence of statements is something you'll
typically encounter in a PHP- and MySQL-driven web page:

$sql = "SELECT id, platform_id, title, price FROM games ORDER BY title";
$query = $db->prepare($sql);
$query->execute();
$query->store_result();
$query->bind_result($id, $platform_id, $title, $price);

What if you could write everything in PHP? Using the Zend Framework's Zend_Db component, you
can achieve an identical result while foregoing altogether the need to write SQL statements:

$game = new Application_Model_Game();
$query = $game->select();
$query->from(array('id', 'platform_id', 'title', 'price'));
$query->order('title');
$result = $game->fetchAll($query);

This programmatic approach to interacting with the database has an additional convenience of giving
you the ability to move your website from one database to another with minimum need to rewrite
your code. Because most frameworks abstract the database interaction process, you're free to switch
your website from one supported database to another with minimum inconvenience.

User Authentication

Whether your website consists of just a small community of friends or is an enormous project with
international reach, chances are you'll require a means for uniquely identify each user who interacts
with your site at some level (typically done with user accounts). Zend_Auth (discussed in Chapter
8) not only provides you with a standardized solution for authenticating users, but also provides you
with interfaces to multiple authentication storage backends, such as a relational database, LDAP,
and OpenID. Further, while each backend depends upon custom options for configuration, the

Easy PHP Websites with the Zend Framework 22

authentication process is identical for all solutions, meaning that even when switching authentication
solutions you'll only have to deal with configuration-related matters.

Web Services

Today's website is often hybridized a construct created from the APIs and data of other online
destinations. GameNomad is a perfect example of this, relying upon the Amazon Associates web
Service for gaming data and the Google Maps API for location-based features, among others.
Without this ability to integrate with other online services such as these, GameNomad would be a
far less compelling project.

While many of these services are built using standardized protocols and data formats, there's no
doubt that writing the code capable of talking to them is a time-consuming and difficult process.
Recognizing this, many frameworks provide libraries which do the heavy lifting for you, giving you
the tools capable of connecting to and communicating with these third-party services. For its part,
the Zend Framework offers Zend_Gdata, for interacting with Google services such as Book Search,
Google Calendar, Google Spreadsheets, and YouTube. You'll also find Zend_Service_Twitter,
for talking to the Twitter service (http://www.twitter.com/), Zend_Service_Amazon, for retrieving
data from Amazon's product database through its web Services API (http://aws.amazon.com/
), and Zend_Service_Flickr, for creating interesting photo-based websites using Flickr (http://
www.flickr.com/), one of the world's largest photo sharing services.

Test-Driven Development

Suffice to say that even a total neophyte is acutely aware of the programming industry's gaffe-filled
history. Whether we're talking about last Tuesday's emergency security fix or the high-profile crash
of the Mars Orbiter due to a simple coding error, it seems as if our mistakes are chronicled in far
more detail than those made within other professions. And for good reason, given that computing
affects practically every aspect of people's lives, both personal and professional.

Given the significant role played by today's computing applications, why are programmers so
seemingly careless? Why does the industry remain so prone to blunders large and small? Although
I'd love to offer some complicated scientific explanation or convincing conspiracy theory, the answer
is actually quite elementary: programming is hard.

So hard in fact, that some of the professional programming community has come to the grips with
the fact that mistakes are not only likely, but that they are inevitable. They have concluded that the
only reasonable way to lessen the frequency of mistakes creeping into the code is by integrating
testing into the development process, rather than treating it as something which occurs after the

http://www.twitter.com/
http://aws.amazon.com/
http://www.flickr.com/
http://www.flickr.com/

Easy PHP Websites with the Zend Framework 23

primary development stage is over. In fact, a growing movement known as test-driven development
emphasizes that tests should be written before the application itself!

To help developers out with the testing process, the Zend Framework comes with a component
called Zend_Test which integrates with the popular PHPUnit testing framework. Using this powerful
combination, you can create tests which verify your website is working exactly as intended. Further,
you can automate the execution of these tests, and even create a variety of reporting solutions which
provide immediate insight into the proper functioning of your site.

I believe this to be such an important part of the development process that subsequent chapters
conclude with a section titled "Testing Your Work". This section presents several common testing
scenarios which relate to the material covered in the chapter, complete with a sample test. Further,
Chapter 11 is entirely devoted to the topic of configuring PHPUnit to work with Zend_Test.

Hopefully this opening section served as a compelling argument in favor of using a framework
instead of repeatedly building custom solutions. And we've hardly scratched the surface in terms the
advantages! My guess is that by this chapter's conclusion, you'll be wondering how you ever got
along without using a framework-centric approach.

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Identify and describe the three tiers which comprise the MVC architecture.

• How does the concept of "convention over configuration" reduce the number of development
decisions you need to make?

• Name two ways the Zend Framework helps you keep your code DRY.

Chapter 2. Creating Your First
Zend Framework Project
Getting started building your first Zend Framework-powered website is surprisingly easy thanks
to a great utility called zf which not only automates the process of creating new Zend Framework
applications, but also automates the generation of key project components such as controllers,
actions, models, and views. In this chapter I'll show you how to get started using the framework by
guiding you through the framework installation and configuration process, followed by a thorough
introduction to the powerful zf tool. After creating your first project, I'll help you navigate through the
various directories and files comprising the default project structure, and show you how to generate
project controllers, actions, and views. Following that, you'll learn how to pass and retrieve data
from one controller action to another using the GET and POST methods, in addition to modify
the framework's default URL routes behavior to your specific needs. Finally, I'll present several
examples which demonstrate how to test various aspects of the features introduced in this chapter.

Downloading and Installing the Zend Framework

Open your browser and navigate to http://framework.zend.com/download/latest. Scroll to the bottom
of the page where you'll find links to the full and minimal versions of the Zend Framework. I
recommend downloading the full version as it contains everything you could possibly need to follow
along with the rest of this book, and a whole lot more. Download the tar.gz or zip package
depending on your operating system's capabilities (the ZIP format is typical for Windows users,
whereas the TAR format is common for Linux users, although you may be able to use either
depending on what decompression software is available on your computer).

Tip
If you're familiar with Subversion, consider retrieving the latest stable version by checking
the project out from Zend's Subversion repository. In doing so you'll be able to easily
update your framework source files to the latest stable version using Subversion's UPDATE
command.

Within the decompressed directory you'll find a directory named library. The library directory
contains the files which together make the Zend Framework run. Because you'll likely soon be in
the position of simultaneously building or maintaining multiple Zend Framework-driven websites,
I recommend placing this directory within a location where it won't later be disturbed, and then
add this location to PHP's include_path configuration directive. For instance, if you store the

http://framework.zend.com/download/latest

Easy PHP Websites with the Zend Framework 25

library directory in /home/wjgilmore/src/zfw110/library then you should open the php.ini
configuration file and add the path to your include_path directive like this:

include_path = ".:/usr/share/php/:/home/wjgilmore/src/zfw110/library"

Once the change has been made, save the file and restart the web server.

Configuring the zf Tool

One really interesting feature of the Zend Framework is a component known as
Zend_Tool_Framework. This component acts as an API of sorts to many features of the framework,
allowing you to create custom utilities useful for managing the framework tooling in powerful
new ways. This component has already been extended to provide developers with a command line
interface typically referred to as zf, which can be used to not only create a new project, but also to
extend your project by adding new controllers, actions, views, models, and other features. While
you're not required to use zf to manage your projects, I guarantee it will be a significant timesaver
and so highly recommend doing so.

To configure zf, return to the decompressed Zend Framework directory where you'll find a directory
named bin. This directory contains the scripts which you'll access via the command line, including
zf.bat, zf.php, and zf.sh.

On Windows, copy the zf.bat and zf.php files into the same directory where your php.exe file is
located (the directory where PHP was installed). Next, make sure the directory where php.exe is
located has been added to your system path. Once added, you'll be able to execute the zf command
from any location within your file system.

On Linux the process is essentially the same; just add the framework directory's bin directory
location to your system path:

%>PATH=$PATH:/path/to/your/zend/framework/bin/directory
%>export PATH

Of course, you'll probably want to make this path modification permanent, done by adding a line
similar to the following to your .bash_profile file:

export PATH=$PATH:/path/to/your/zend/framework/bin/directory

Next, confirm zf is working properly by executing the following command from your prompt:

%>zf show version
Zend Framework Version: 1.11.2

Easy PHP Websites with the Zend Framework 26

If you do not see your framework version number, and instead receive an error, it's likely because
the wrong path was used within the system path variable or when defining the library directory's
location within the include_path directive. So be sure to double-check those settings if you
encounter a problem. Presuming your framework version number has indeed been displayed, move
on to the next section!

Tip
If you're using any version of Microsoft Windows, you're probably aware that the native
terminal window is a piece of trash. As you'll presumably be spending quite a bit of time
using zf, typing commands into this nightmarish interface will quickly become tiresome.
Save yourself some pain and consider installing Console2 (http://sourceforge.net/projects/
console/), a fantastic command prompt replacement which lets you run multiple prompts
using a tabbed interface, and perform useful tasks such as changing the font size and color,
and resizing the window.

Creating Your First Zend Framework Project

With the Zend Framework installed and zf configured, it's time to create a project. Open a terminal
window and navigate to your web server's document root (or wherever else you choose to manage
your websites). Once there, execute the following command:

%>zf create project dev.gamenomad.com
Creating project at /var/www/dev.gamenomad.com
Note: This command created a web project, for more
information setting up your VHOST,
please see docs/README

The project name is completely up to you, however for organizational purposes I prefer to name
my projects similarly to the URL which will be used to access them via the browser. Because the
project is hosted on my development laptop, I'd like to reference the project via the URL http://
dev.gamenomad.com and so have named the project accordingly.

Adjust Your Document Root

You might recall how in the previous chapter we talked about how the Zend Framework uses a front
controller to process all incoming requests. This front controller is contained within a file named
index.php, and it resides in a directory named public. You don't need to create this directory or file,
because zf automatically created both for you when the project was generated. In order for the front
controller to be able to intercept these requests, the public directory must be identifiable by Apache
as the site's root directory. Precisely how this is done will depend upon your system's particular

http://sourceforge.net/projects/console/
http://sourceforge.net/projects/console/

Easy PHP Websites with the Zend Framework 27

configuration, however presuming you're running the recommended latest stable version of Apache
2.2.X let's do things the proper way and configure a virtual host for the new site. Doing so will give
you the ability to easily maintain multiple websites on the same web server.

What is a Virtual Host?

A virtual host is a mechanism which makes it possible to host multiple websites on a single
machine, thereby reducing hardware and support costs. If you host your website at a shared
hosting provider, then your site is configured as a virtual host alongside hundreds, and
perhaps even thousands of other websites on the same server. This feature is also useful
when developing websites, because you can simultaneously develop and maintain multiple
sites on your development machine, and even reference them by name within the browser
rather than referring to localhost.

Configuring a Virtual Host on Windows

Setting up an Apache-based virtual host on Windows is a pretty easy process, accomplished in just a
few steps. First you want to configure Apache's virtual hosting feature. Open your httpd.conf file
and uncomment the following line:

#Include conf/extra/httpd-vhosts.conf

This httpd-vhosts.conf file will contain your virtual host definitions. Open this file and you'll find
the following block of text:

<VirtualHost *:80>
 ServerAdmin webmaster@dummy-host.localhost
 DocumentRoot "C:/apache/docs/dummy-host.localhost"
 ServerName dummy-host.localhost
 ServerAlias www.dummy-host.localhost
 ErrorLog "logs/dummy-host.localhost-error.log"
 CustomLog "logs/dummy-host.localhost-access.log" common
</VirtualHost>

This VirtualHost block is used to define a virtual host. For instance to define the virtual host
dev.gamenomad.com (which will be used for a Zend Framework-powered website) you should copy
and paste the block template, modifying it like so:

<VirtualHost *:80>
 ServerAdmin webmaster@dummy-host.localhost
 DocumentRoot "C:/apache/docs/dev.gamenomad.com/public"
 ServerName dev.gamenomad.com
 ServerAlias dev.gamenomad.com

Easy PHP Websites with the Zend Framework 28

 ErrorLog "logs/dev.gamenomad.com-error.log"
 CustomLog "logs/dev.gamenomad.com-access.log" common
</VirtualHost>

The ServerAdmin setting is irrelevant because Windows machines are not by default configured to
send e-mail. The DocumentRoot should define the absolute path pointing to the Zend Framework
project's public directory (more on this in a bit). The ServerName and ServerAlias settings should
identify the name of the website as you would like to access it locally. Finally, the ErrorLog and
CustomLog settings can optionally be used to log local traffic.

Save the httpd-vhosts.conf file and restart Apache. Finally, open the hosts file, which on
Windows XP and Windows 7 is located in the directory C:\WINDOWS\system32\drivers\etc.
Presuming you've never modified this file, the top of the file will contain some comments followed
by this line:

127.0.0.1 localhost

Add the following line directly below the above line:

127.0.0.1 dev.gamenomad.com

Save this file and when you navigate to http://dev.gamenomad.com, your machine will attempt to
resolve this domain locally. If Apache is running and you access this URL via your browser, Apache
will look to the virtual host file and server the domain's associated website.

Configuring a Virtual Host on Ubuntu

Ubuntu deviates from Apache's default approach to virtual host management in a very practical
way, defining each virtual host within a separate file which is stored in the directory /etc/apache2/
sites-available/. For instance, a partial listing of my development machine's sites-available
directory looks like this:

dev.gamenomad.com
dev.wjgilmore.com

All of these files include a VirtualHost container which defines the website's root directory and
default behaviors as pertinent to Apache's operation. This is a fairly boilerplate virtual host definition,
insomuch that when I want to create a new virtual host I just copy one of the files found in sites-
available and rename it accordingly. What's important is that you notice how the DocumentRoot
and Directory definitions point to the website's public directory, because that's where the front
controller resides. For instance, the dev.gamenomad.com file looks like this:

Easy PHP Websites with the Zend Framework 29

<VirtualHost *>
 ServerAdmin webmaster@localhost
 ServerName dev.gamenomad.com

 DocumentRoot /var/www/dev.gamenomad.com/public
 <Directory />
 Options FollowSymLinks
 AllowOverride All
 </Directory>
 <Directory /var/www/dev.gamenomad.com/public/>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride All
 Order allow,deny
 allow from all
 </Directory>

 ErrorLog /var/log/apache2/error.log

 LogLevel warn

 CustomLog /var/log/apache2/access.log combined

</VirtualHost>

With the virtual host defined, you're not able to access the site just yet. The sites-available
directory only contains the sites which you have defined. To enable a site, you'll need to execute
the following command:

%>sudo a2ensite dev.gamenomad.com

Attempting to access this site from within the browser will cause your machine to actually attempt to
resolve the domain, because your machine doesn't yet know that it should instead resolve the domain
name locally. To resolve the name locally, open your /etc/hosts file and add the following line:

127.0.0.1 dev.gamenomad.com

Once this file has been saved, all subsequent attempts to access dev.gamenomad.com will result in
your machine resolving the domain locally! You may need to clear the browser cache if you had
attempted to access dev.gamenomad.com before modifying your hosts file.

Navigate to the Project Home Page

Presuming your project has been correctly configured, you should see the image displayed in Figure
2.1.

Easy PHP Websites with the Zend Framework 30

Figure 2.1. A Zend Framework Project's Home Page

If this page doesn't appear, double-check both the changes you made to Apache's configuration file
and your system's hosts file to make sure there aren't any spelling mistakes, and that the directory
you reference in the virtual host is indeed the correct one.

The Project Structure
A Zend Framework project structure consists of quite a few directories and files, each of which plays
an important role in the website's operation. Taking some time to understand their specific roles is
going to help you to swiftly navigate among and modify these files as your site begins to take shape.
Open a terminal window and list the contents of the newly created project's home directory. There
you'll find five directories and one file, each of which is introduced next:

• application: The application directory contains the bulk of your website's domain-specific
features, including the actions, configuration data, controllers, models, and views. Additionally,
this directory contains a file named Bootstrap.php, which is responsible for initializing data and
other resources specific to your website. I'll return to this file throughout the book as needed.

• docs: The docs directory is intended to store your website's developer documentation, including
notably documentation generated using an automated solution such as PHPDoc.

Easy PHP Websites with the Zend Framework 31

• library: Empty by default, the library directory is intended to host third-party libraries which
supplement your website's behavior. I'll return to this directory in later chapters as the example
website grows in complexity.

• public: The public directory contains the website files which should not be processed via
the front controller, including notably the site's CSS stylesheets, images, and JavaScript files.
Additionally in this directory you'll find the front controller index.php) and .htaccess file
responsible for redirecting all client requests to the front controller, which in turn identifies the
appropriate application controller to contact. A newly created project's public directory contains
nothing but the .htaccess and index.php files, meaning you'll need to create directories for
organizing other site assets such as the images and JavaScript. In Chapter 3 I'll talk more about
best practices for managing this data.

• tests: The tests directory contains the website's test suite. I'll talk about this directory in some
detail in Chapter 11.

• .zfproject.xml: This file contains a manifest of all changes made by the zf's command line
interface, organized in XML format. While it's quite unlikely you'll ever need to view or modify
this file's contents, under no circumstances should you delete it because doing so will negate your
ability to continue using zf in conjunction with your project.

Incidentally, although this is the most common way to organize a Zend framework project, it's not the
only supported structure. You'll occasionally see project's organized as a series of modules, because
it's possible to build Zend Framework-driven applications which can be plugged into another site
as a module. I suspect that as it becomes easier to create and distribute these modules, you'll see
this alternative structure gain in popularity however for the time being I suggest using the default
structure until the growing complexity of your project warrants exploring other options.

Extending Your Project with Controllers, Actions, and
Views

Following the project skeleton generation, zf will remain a constant companion throughout the
lifetime of your project thanks to its ability to also create new project controllers, actions, and views
(it can also create models, but that's a subject for chapters 6 and 7).

Warning
At the time of this writing zf was incapable of recognizing changes made to the project
which were not carried out using the command-line interface. This is because zf considers

Easy PHP Websites with the Zend Framework 32

the .zfproject.xml manifest introduced in the previous section to be the sole determinant
in regards to the current project state. Therefore if you manually create a project component
such as a controller and then later try to add an action to the controller using zf, you will be
greeted with a warning stating that the controller does not exist, because there is no record
of it existing as determined by the .zfproject.xml file.

Creating Controllers

When a new project is generated, zf will also create the Index and Error controllers, so you can
go about modifying the Index controller right away. As you expand the site, you'll logically want
to create additional controllers. For instance, we might create a controller named About which will
visitors a bit more about your organization. To do this, use the create controller command:

%>zf create controller About

Executing this command will result in the creation of the About controller containing one action
named IndexAction, a corresponding index view, and an About controller test file. The project
profile (.zfproject.xml) is also updated to reflect the latest changes to the project.

The generated AboutController.php (located in application/controllers/) contains the
following contents:

<?php

class AboutController extends Zend_Controller_Action
{

 public function init()
 {
 /* Initialize action controller here */
 }

 public function indexAction()
 {
 // action body
 }

}

First and foremost, note that the controller extends the Zend_Controller_Action class. In doing
so, the controller class will be endowed with the special characteristics and behaviors necessary to
function within the Zend Framework environment. One such special characteristic is the init()

Easy PHP Websites with the Zend Framework 33

method, located at the top of the class. This method will execute prior to the execution of any action
found in the controller, meaning you can use init() to initialize parameters or execute tasks which
are relevant to more than one action.

You'll also find a method named IndexAction. When generating a new controller this action and its
corresponding view (named index.phtml) will also be created. The index action is special because
the Zend Framework will automatically refer to it when you access the controller via the browser with
no corresponding action. For instance, if you were to access http://dev.gamenomad.com/about,
the About controller's index action will automatically execute. If you want zf to skip creating an
index view, pass a second parameter of 0 to the create controller command, like so:

%>zf create controller About 0

Navigate to http://dev.gamenomad.com/about/ and you'll see that the About controller has
indeed been created, along with an corresponding view which contains some placeholder text.
Consider opening index.phtml (located in application/views/scripts/about/) and replacing the
placeholder text with some background information about your website. Remember that in your
view you can use HTML, so format the information however you please.

Creating Actions

You can add an action to an existing controller using the create action command. For instance, to
add an action named contact to the About controller, use the following command:

%>zf create action contact About

The default behavior of this command is to also create the corresponding contact.phtml view. To
override this default, pass a third parameter of 0 like so:

%>zf create action contact About 0

Creating Views

You can use the create view command to create new views. At the time of writing, this command
works a bit differently than the others, prompting you for the controller and action:

%>zf create view
Please provide a value for $controllerName
zf> About
Please provide a value for $actionNameOrSimpleName
zf> contact

Easy PHP Websites with the Zend Framework 34

Updating project profile '/var/www/dev.gamenomad.com/.zfproject.xml'

Keep in mind this command only creates the view. If you want to create an action and a corresponding
view, use the create action command.

Passing Data to the View
Recall that the view's primary purpose is to display data. This data will typically be retrieved
from the model by way of the corresponding controller action. To pass data from the action to its
corresponding view you'll assign the data to the $this->view object from within the action. For
instance, suppose you wanted to associate a specific page title with the About controller's index
action. The relevant part of that action might look like this:

public function indexAction()
{
 $this->view->pageTitle = "About GameNomad";
}

With this variable defined, you'll be able to reference it within your view like this:

<title><?= $this->pageTitle; ?></title>

Retrieving GET and POST Parameters
The dynamic nature of most websites is dependent upon the ability to persist data across requests. For
instance a video game console name such as ps3 might be passed as part of the URL (e.g. http://
dev.gamenomad.com/games/console/ps3). The requested page could use this parameter to consult
a database and retrieve a list of video games associated with that console. If a visitor wanted to
subscribe to your newsletter, then he might pass his e-mail address through an HTML form, which
would then be retrieved and processed by the destination page.

Data is passed from one page to the next using one of two methods, either via the URL (known as
the GET method) or as part of the message body (known as the POST method). I'll spare you the
detailed technical explanation, however you should understand that the POST method should always
be used for requests which add or change the world's "state", so to speak. For instance, submitting a
user registration form will introduce new data into the world, meaning the proper method to use is
POST. On the contrary, the GET method should be used in conjunction with requests which would
have no detrimental effect if executed multiple times, such as a web search effected through a search
engine. Forms submitted using the GET method will result in the data being passed by way of the
URL. For instance, if you head on over to Amazon.com and search for a book, you'll see the search
keywords passed along on the URL.

Easy PHP Websites with the Zend Framework 35

The distinction is important because forms are often used to perform important tasks such as
processing a credit card. Browser developers presume such forms will adhere to the specifications
and be submitted using the POST method, thereby warning the user if he attempts to reload the page
in order to prevent the action from being performed anew (in this case, charging the credit card a
second time). If GET was mistakenly used for this purpose, the browser would logically not warn the
user, allowing the page to be reloaded and the credit card potentially charged again (I say potentially
because the developer may have built additional safeguards into the application to prevent such
accidents). Given the important distinction between these two methods, keep the following in mind
when building web forms:

• Use GET when the request results in an action being taken that no matter how many times it's
submitted anew, will not result in a state-changing event. For instance, searching a database
repeatedly will not affect the database's contents, making a search form a prime candidate for the
GET method.

• Use POST when the request results in a state-changing event, such as a comment being posted to
a blog, a credit card being charged, or a new user being registered.

In the sections that follow I'll show you how to retrieve data submitted using the GET and POST
methods. Understanding how this is accomplished will be pivotal in terms of your ability to build
dynamic websites.

Retrieving GET Parameters

The Zend Framework's default routing behavior follows a simple and intuitive pattern in which the
request's associated controller and action are specified within the URL. For instance, consider the
following URL:

http://dev.gamenomad.com/games/list/console/ps3

The framework's default behavior in this instance would be to execute the Games controller's list
action. Further, a GET parameter identified by the name console has been passed and is assigned
the value ps3. To retrieve this parameter from within the list action you'll use a method named
getParam() which is associated with a globally available _request object:

$console = $this->_request->getParam('console');

If the list action was capable of paging output (see Chapter 6 for more information about
pagination), you might pass the current page number along as part of the URL:

http://dev.gamenomad.com/games/list/console/ps3/page/4

Easy PHP Websites with the Zend Framework 36

The framework supports the ability to pass along as many parameters as you please, provided each
follows the pattern of /key/value. Because the above URL follows this pattern, retrieving both the
console and page values is trivial:

$console = $this->_request->getParam('console');
$page = $this->_request->getParam('page');

Retrieving POST Parameters

Although Chapter 5 is dedicated to forms processing, the matter of passing form data from one
action to another is of such fundamental importance that I wanted to at least introduce the syntax in
this early chapter. The syntax is only slightly different from that used to retrieve a GET parameter,
involving the _request object's getPost() method. For example, suppose you wanted to provide
visitors with a simple contact form which can be used to get in touch with the GameNomad team.
That form syntax might look like this:

<form action="/about/contact" method="post">
<label for="email">Your E-mail Address:</label>

<input type="text" name="email" value="" size="25" />

<label for="message">Your Message:</label>

<textarea name="message" cols="30" rows="10"></textarea>

<input type="submit" name="submit" value="Contact Us!" />
</form>

The form's action points to the About controller's contact method, meaning the form data will be
made available to this action once the form has been submitted. The form method is identified as
POST , so to retrieve the data, you'll use the _request object's getPost() method as demonstrated
here:

$email = $this->_request->getPost('email');
$message = $this->_request->getPost('message');

Keep in mind that the getPost() method does not filter nor validate the form data! The Zend
Framework offers a powerful suite of input validation features which I'll introduce in Chapter
5, along with a much more efficient way to create forms and process data than the approach
demonstrated here.

Creating Custom Routes

As you've seen throughout this chapter, the Zend Framework employs a straightforward and intuitive
routing process in which the URL's composition determines which controller and action will execute.

Easy PHP Websites with the Zend Framework 37

This URL may also be accompanied by one or more parameters which the action may accept as
input. To recap this behavior, consider the following URL:

http://dev.gamenomad.com/games/view/asin/B000TG530M/

When this URL is requested, the Zend Framework's default behavior is to route the request to the
Games controller's view action, passing along a GET parameter named asin which has been assigned
the value B000TG530M. But what if you wanted the URL to look like this:

http://dev.gamenomad.com/games/B000TG530M

Tip
The parameter asin stands for Amazon Standard Identification Number, which uniquely
identifies products stored in the Amazon.com product database. See Chapter 10 for more
information about how GameNomad retrieves video game data from Amazon.com.

It's possible to allow this URL to continue referring to the Games controller's view action by creating
a custom route. You can use the Zend Framework's custom routing feature to not only override
the framework's default behavior, but also to set default parameter values and even use regular
expressions which can route requests to a specific controller action whenever the defined expression
pattern is matched.

To create a custom route open the Bootstrap.php file, located in your project's application
directory. You might recall that earlier in the chapter I mentioned the Bootstrap.php file was
useful for initializing data and other resources specific to your website, including custom routes.
The Bootstrap.php file's behavior is a tad unusual, as any method embedded within the Bootstrap
class found in this file will automatically execute with each invocation of the framework (with every
request). Further, these method names must be prefixed with _init, otherwise they will be ignored.
Therefore in order for the custom routes to work, you'll need to embed them within an appropriately
named method named _initRoutes, for instance.

Let's create a custom route which makes it very easy for users to login by navigating to http://
dev.gamenomad.com/login. Doing so will actually result in the execution of the Account controller's
login action (which we'll talk about in detail in Chapter 8). The code is presented next, followed
by an explanation:

01 public function _initRoutes()
02 {
03 $frontController = Zend_Controller_Front::getInstance();
04 $router = $frontController->getRouter();
05
06 $route = new Zend_Controller_Router_Route_Static (

Easy PHP Websites with the Zend Framework 38

07 'login',
08 array('controller' => 'Account', 'action' => 'login')
09);
10
11 $router->addRoute('login', $route);
12 }

Let's review each line of this example:

• Line 01 defines the method used to host the custom route definitions. You can name this method
anything you please, provided it is prefixed with _init.

• Lines 03-04 retrieve an instance of the framework router. This is needed because we'll append
the custom routes to it so the framework is aware of their existence. You only need to execute
these two lines once regardless of the number of custom routes you create, typically at the very
beginning of the method.

• Lines 06-09 define a static custom route. A custom route of type
Zend_Controller_Router_Route_Static is preferable for performance reasons when no regular
expression patterns need to be evaluated. The constructor accepts two parameters. The first, found
on Line 07, defines the custom route, while the second (Line 08) determines which controller and
action should be executed when this route is requested.

• Line 11 activates the route by adding it to the framework router's list of known routes. The first
parameter of the addRoute() method assigns a unique name to this route. Be sure that each route
is assigned a unique name, otherwise naming clashes will cause the previously defined route to
be canceled out.

After saving the Bootstrap.php file, you should be able to navigate to http://dev.gamenomad.com/
login and be served the placeholder text found in the Account controller's login action's
corresponding view (obviously you'll need to create this action if you haven't already done so).

Defining URL Parameters

This section's opening example discussed streamlining the URL by removing the explicit referral to
the view action. This is easily accomplished using a custom route which overrides the framework's
default behavior of presuming the action name appears after the controller within the URL. Because
a minimal level of pattern matching is required to identify the parameter location, we can no longer
use the Zend_Controller_Router_Route_Static custom route class, and instead need to use the
Zend_Controller_Router_Route class. The custom route which satisfies the goal of removing the
reference to the view action follows:

Easy PHP Websites with the Zend Framework 39

$route = new Zend_Controller_Router_Route (
 'games/:asin/',
 array('controller' => 'Games',
 'action' => 'view'
)
);

$router->addRoute('game-asin-view', $route);

Notice how the parameter location is prefixed with a colon :asin). With the parameter name
and location within the route defined, you can retrieve it from within the view action using the
getParam() method introduced in the previous section:

$asin = $this->getRequest()->getParam('asin');

It's also possible to define default parameter values should they not be defined within the URL.
Although this feature is particularly useful for values such as dates and page numbers, it can
be applied to any parameter, including the game ASIN. For instance, suppose you modified the
previously used route to include the parameter name asin, and wanted to set this route to a default
ASIN value should the user somehow delete it from the URL. You can set a default asin value
within the custom route definition:

$route = new Zend_Controller_Router_Route (
 'games/asin/:asin',
 array('controller' => 'Games',
 'action' => 'view',
 'asin' => 'B000TG530M'
)
);

$router->addRoute('game-asin-view', $route);

Once defined, any attempt to request http://dev.gamenomad.com/games/asin/ (notice the missing
ASIN), will result in the asin parameter being populated with the string B000TG530M.

This section really only scratches the surface in terms of what you can do with the Zend Framework's
custom routing feature. Be sure to check out the Zend Framework manual for a complete breakdown
of what's possible.

Testing Your Work

Testing is such an important part of the development process that I didn't want to treat the topic as an
afterthought. At the same time, it seems illogical to put the cart before the horse and discuss the fairly

Easy PHP Websites with the Zend Framework 40

complicated topic of the Zend Framework's Zend_Test testing component before acquainting you
with the framework's fundamentals. Regardless, I didn't want to decouple the testing discussion from
the other topics discussed throughout this book, and so have opted to conclude each chapter with a
section covering testing strategies relevant to the chapter's subject matter. If you don't yet understand
how to configure Zend_Test, no worries, just skip these sections until you've read Chapter 11, and
then return to each section as desired.

Many of these tests are purposefully pedantic, with the goal of showing you how to cut a wide swath
when testing your application. There will probably never be a need to even execute some of the
tests as I present them, such as the first test which merely verifies controller existence, however the
syntax found within each test could easily be combined with others to form useful testing scenarios.
Ultimately, in regards to these sections each chapter will build upon what you've learned in previous
chapters in order to provide you with a well-rounded understanding of how to create tests to suit
your specific needs.

Verifying Controller Existence

To test for controller existence, you'll want to send (dispatch) a request to any route mapped to the
desired controller, and then use the assertController() method to identify the controller name:

public function testDoesAccountControllerExist()
{
 $this->dispatch('/about');
 $this->assertController('about');
}

Verifying Action Existence

To test for the existence of an action, you'll use the assertAction() method, identifying the name
of the action which should be served when the specified route is dispatched. Rather than separately
test for the existence of controller and action, consider bundling both tests together, as demonstrated
here:

public function testDoesAccountIndexPageExist()
{
 $this->dispatch('/about');
 $this->assertController('about');
 $this->assertAction('index');

}

Easy PHP Websites with the Zend Framework 41

Verifying a Response Status Code

A resource request could result in any number of events, such as a successful response, a redirection
to another resource, or the dreaded internal server error. Each event is associated with a response
code which is returned to the client along with any other event-driven information. For instance, a
successful response will include the requested information and a response code of 200. An internal
server error will return a response code of 500. You can test to ensure your actions are properly
responding to a request by verifying the response code using the assertResponseCode() method:

public function testDoesAccountIndexPageExistAndReturn200ResponseCode()
{
 $this->dispatch('/about');
 $this->assertController('about');
 $this->assertAction('index');
 $this->assertResponseCode(200);

}

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• What command-line tool is used to generate a Zend Framework project structure?

• What file should you never remove from the project directory, because it will result in the
aforementioned tool not working properly?

• What is a virtual host and why does using virtual hosts make your job as a developer easier?

• What two files are found in the public directory when a new project is generated? What are the
roles of these files? What other types of files should you place in this directory?

Chapter 3. Managing Layouts,
Views, CSS, Images and
JavaScript
While a great deal of attention is devoted to compelling features such as web services integration,
the lion's share of productivity stems from the Zend Framework's ability to manage more mundane
details such as configuration data and website assets such as templates, CSS, images, and JavaScript.
The lack of attention is unfortunate given the enormous amount of time and effort you and your team
will spend organizing these resources over the course of a project's life cycle.

In this chapter I'll break from this pattern by introducing you to many of the Zend Framework's
asset management features, beginning with showing you how to effectively manage your website
templates (referred to as layouts in Zend Framework vernacular), as well as override the default
behaviors of layouts and views. You'll also learn about the framework's view helpers, and even learn
how to create custom view helpers, which can go a long way towards keeping your code DRY. Next,
we'll talk about several native features which can help you manage your website images, CSS, and
JavaScript. Finally, the chapter concludes with a variety of example tests which can help you to
avoid common implementation errors.

Managing Your Website Layout

One common approach to managing website layouts involves creating a series of files with each
containing a significant portion of the site, such as the header and footer. Several require_once
statements are used within each page to include the header and footer, which when requested results
in the entire page being assembled by the PHP scripting engine. However this approach quickly
becomes tedious because of the inherent difficulties which arise due to breaking HTML and scripting
elements across multiple files.

The Zend Framework offers a far more convenient solution which allows you to manage a website
layout within a single file. This file contains the site's header, footer, and any other data which should
be made available within every page. Each time a page is requested, the framework will render
the layout, injecting the action's corresponding view into the layout at a predefined location. I'll
talk about precisely where that location is in a moment. First you'll need to enable the framework's
layout feature for your application by executing the following command from the application's root
directory:

Easy PHP Websites with the Zend Framework 43

%>zf enable layout
Layouts have been enabled, and a default layout created at
/var/www/dev.gamenomad.com/application/layouts/scripts/layout.phtml
A layout entry has been added to the application config file.

As the command output indicates, the layout file is named layout.phtml and it resides in the
directory application/layouts/scripts/. Open this file and you'll see a single line:

<?php echo $this->layout()->content; ?>

This is the location where the action's view will be injected into the layout. Therefore you can add
your site's global page elements simply by building around this command. For instance, one of the
first things you'll probably want to do is add the standard HTML header and closing tags:

<html>
<head>
<title>GameNomad</title>
</head>
<body>
<h1>Welcome to GameNomad</h1>
<?php echo $this->layout()->content; ?>
<p>
Questions? Contact the GameNomad team at support@gamenomad.com!
</p>
</body>
</html>

Once saved, navigate to any page within your site and you'll see that the header and footer are now
automatically added, as depicted in Figure 3.1.

Easy PHP Websites with the Zend Framework 44

Figure 3.1. Using the Zend Framework's layout feature

Using Alternative Layouts

Although the typical website embraces a particular design theme, it's common to use multiple layouts
in order to accommodate the organization of different data sets. Consider for instance the layout of
any major media website. The site's home page and several of the category home pages might use a
three-column layout, whereas the pages which display an article employ a two-column layout. You
can change an action's layout file by retrieving an instance of the layout using a feature known as
the helper broker, and then calling the setLayout() method, passing in the name of the alternative
layout:

$layout = $this->_helper->layout();
$layout->setLayout('three-column');

Like the default layout, any alternative layout should also reside in the application/layouts/
scripts/ directory, and should use the .phtml extension.

Easy PHP Websites with the Zend Framework 45

If you wanted to change the layout for all actions in a particular controller, just insert the above two
lines into the controller's init() method, which will execute prior to the invocation of any action
found in the controller. See the last chapter for more information about the init() method.

Disabling the Layout

To prevent the layout from rendering, call the disableLayout() helper at the top of the action:

$this->_helper->layout()->disableLayout();

Keep in mind that disabling the layout will not disable the action's corresponding view. If you want
to create an action which neither renders a layout nor a view, you'll also need to explicitly disable
the view. You'll learn how to disable an action's view in the later section "Disabling the View".

Tip
If you would like to disable the layout and view in order to process an AJAX request,
then chances are you won't need to call either of these helpers because the framework's
encodeJson() helper will automatically disable rendering of both for you. See Chapter 9
for more information about processing AJAX requests.

Managing Views

When a controller action is invoked, the Zend Framework's default behavior is to look for an
appropriately named action to return as the response. However, there are situations which you might
wish to override this default behavior, either by using a different view or by disabling view rendering
altogether.

Overriding the Default Action View

By default the framework will search for a view script named identically to the action being invoked.
For instance, if the About controller's contact action is called, then the framework will expect
an action named contact.phtml to exist and reside in the application/views/scripts/about
directory. You can override this behavior by passing the name of a different controller into the
render() helper:

$this->view->render('alternate.phtml');

If the view script resides in a directory different than that where the currently executing controller's
views reside, you can change the view script path using the setScriptPath() method:

Easy PHP Websites with the Zend Framework 46

$this->view->setScriptPath('/application/scripts/mobile/about/');
$this->view->render('contact.phtml');

Disabling the View

Should you need to prevent an action's view from being rendered, add the following line to the top
of the action body:

$this->_helper->viewRenderer->setNoRender(true);

Presumably you'll also want to disable the layout, therefore you'll also need to call the
disableLayout() helper as introduced earlier in this chapter:

$this->_helper->layout()->disableLayout();
$this->_helper->viewRenderer->setNoRender();

View Helpers

The Zend Framework supports a feature known as a view helper which can be used to manage the
placement and formatting of a wide variety of site assets and other data, including page titles, CSS
and JavaScript files, images, and even URLs. You can even create custom view helpers which can
be immensely useful for minimizing the amount of repetitive logic which would otherwise be spread
throughout the view templates. In this section I'll introduce you to one of the framework's most
commonly used view helpers, and even show you how to create your own. Later in the chapter I'll
introduce other native view helpers relevant to managing your site's CSS, JavaScript, and other key
page elements.

Managing URLs

The framework supports a URL view helper which can be used to programmatically insert URLs
into a page. For instance, suppose you wanted to create a hyperlink which points to http://
dev.gamenomad.com/games/platform/console/ps3. Using the URL view helper within your view,
you'll identify the controller, action, and lone parameter like this:

<a href="<?= $this->url(array(
 'controller' => 'games',
 'action' => 'platform',
 'console' => 'ps3')); ?>">View PS3 games

Executing this code will result in a hyperlink being added to the page which looks like this:

Easy PHP Websites with the Zend Framework 47

View PS3 games

But isn't this more trouble than its worth? After all, writing the hyperlink will actually require less
keystrokes than using the URL view helper. The primary reason you should use the URL view helper
is for reasons of maintainability. What if you created a site which when first deployed was placed
within the web server's root document directory, but as the organization grew needed to be moved
into a subdirectory? This location change would require you to modify every link on the site to
accommodate the new location. Yet if you were using the URL view helper, no changes would be
necessary because the framework is capable of detecting any changes to the base URL.

The secondary reason for using the URL view helper is that it's possible to reference a custom named
route within the helper instead of referring to a controller and action at all, allowing for maximum
flexibility should you later decide to point the custom route elsewhere. For instance, you might recall
the custom route created in the last chapter which allowed us to use a more succinct URL when
viewing information about a specific game. This was accomplished by eliminating the inclusion
of the action within the URL, allowing us to use URLs such as http://dev.gamenomad.com/
games/B000TG530M rather than http://dev.gamenomad.com/games/asin/B000TG530M. To refresh
your memory, the custom route definition is included here:

$route = new Zend_Controller_Router_Route (
 'games/asin/:asin',
 array('controller' => 'Games',
 'action' => 'view',
 'asin' => 'B000TG530M'
)
);

$router->addRoute('game-asin-view', $route);

Notice how the name game-asin-view is associated with this custom route when it's added to the
framework's router instance. You can pass this unique name to the URL view helper to create URLs:

<a href="<?= $this->url(array(
 'asin' => 'B000TG530M'),
 'game-asin-view'); ?>">Call of Duty 4: Modern Warfare

Executing this code will produce the following hyperlink:

http://dev.gamenomad.com/games/B000TG530M

Table 3-1 highlights some of the Zend Framework's other useful view helpers. Keep in mind that
this is only a partial listing. You should consult the documentation for a complete breakdown.

Easy PHP Websites with the Zend Framework 48

Table 3.1. Useful View Helpers

Name Description

Currency Displays currency using a localized format

Cycle Alternates the background color for a set of values

Doctype Simplifies the placement of a DOCTYPE definition within an
HTML document

HeadLink Links to external CSS files and other resources, such as favicons
and RSS feeds

HeadMeta Defines meta tags and setting client-side caching rules

HeadScript Adds client-side scripting elements and links to remote scripting
resources. You'll learn more about this helper later in the chapter

HeadStyle Adds CSS declarations inline

Creating Custom View Helpers

You'll often want to repeatedly perform complex logic within your code, such as formatting a user's
birthday in a certain manner, or rendering a certain icon based on a preset value. To eliminate the
redundant insertion of this code, you can package it within classes known as custom view helpers,
and then call each view helper as necessary.

To create a custom view helper, you'll create a new class which extends the framework's
Zend_View_Helper_Abstract class. For instance, the following helper is used on the GameNomad
website in order to easily associate the appropriate gender with the user's gender designation:

01 <?php
02
03 class Zend_View_Helper_Gender extends Zend_View_Helper_Abstract
04 {
05
06 /**
07 * Produces string based on whether value is
08 * masculine or feminine
09 *
10 * @param string $gender
11 * @return string
12 */
13 public function Gender($gender)
14 {
15

Easy PHP Websites with the Zend Framework 49

16 if ($gender == "m") {
17 return "he";
18 } else {
19 return "she";
20 }
21
22 }
23
24 }
25
26 ?>

The code breakdown follows:

• Line 03 defines the helper class. Notice the naming convention and format used in the class name.

• Line 13 defines the class method, Gender(). This method must be named identically to the
concluding part of your class name Gender, in this case). Likewise, the helper's file name must
be named identically to the method, include the .php extension Gender.php, and be saved to the
application/views/helpers directory.

Once created, you can execute the helper from within your views like so:

Jason owns 14 games, and <?= $this->Gender("m"); ?> is
currently playing Call of Duty: World at War.

Partial Views

Many web pages are built from snippets which are found repeatedly throughout the website. For
instance, you might insert information about the best selling video game title within a number of
different pages. The HTML might look like this:

<p>
 Best-selling game this hour:

 Call of Duty: Black Ops
</p>

So how can we organize these templates for easy reuse? The Zend Framework makes it easy to do
so, calling them partials. A partial is a template which can be retrieved and rendered within a page,
meaning you can use it repeatedly throughout the site. If you later decide to modify the partial to
include for instance the current Amazon sales rank, the change will immediately occur within each
location the partial is referenced. Let's turn the above snippet into a partial:

<p>
 Best-selling game this hour:

Easy PHP Websites with the Zend Framework 50

 <a href="/games/title/<?= $this->permalink;?>"><?= $this->title; ?>
</p>

However partials have an additional useful feature in that they can contain their own variables and
logic without having to worry about potential clashing of variable names. This is useful because the
variables $this->permalink and $this->title may already exist in the page calling the partial, but
because of this behavior, we won't have to worry about odd side effects.

For organizational purposes, I prefix partial file names with an underscore, and store them
within the application/views/scripts directory. For instance, the above partial might be named
_hottestgame.phtml. To insert a partial into a view, use the following call:

<?= $this->partial('_hottestgame.phtml',
 array('permalink' => $game->getPermalink(), 'title' => $game->getTitle())); ?>

Notice how each key in the array corresponds to a variable found in the referenced partial.

The Partial Loop

The Zend Framework offers a variation of the partial statement useful for looping purposes. Revising
the hottest game partial, suppose you instead wanted to provide a list containing several of the
hottest selling games. You can create a partial which represents just one entry in the list, and use
the PartialLoop construct to iterate through the games and format them accordingly. The revised
partial might look like this:

<a href="/games/<?= $this->asin; ?>"><?= $this->title; ?>

Using the PartialLoop construct, you can pass along a partial and a multi-dimensional array,
prompting the loop to iterate until the array values have been exhausted:

<ul id="hottest">
<?= $this->partialLoop('_hottestgames.phtml',
 array(
 array('asin' => 'B000TG530M', 'title' => 'Call of Duty 4: Modern Warfare'),
 array('asin' => 'B000FRU1UM', 'title' => 'Grand Theft Auto IV'),
 array('asin' => 'B000FRU0NU', 'title' => 'Halo 3')
)
)

Executing this partial loop within a view produces the following output:

<ul id="hottest">

Easy PHP Websites with the Zend Framework 51

 Call of Duty 4: Modern Warfare
 Grand Theft Auto IV
 Halo 3

Managing Images
There really isn't much to say regarding the integration of images into your website views, as no
special knowledge is required other than to understand that the framework will serve images from
the public directory. However, the Zend_Tool utility does not generate a directory intended to host
your site images when the application structure is created, so I suggest creating a directory named
images or similar within your public directory. After moving the site images into this directory,
you can reference them using the typical img tag:

Managing CSS and JavaScript
As is the case with images, no special knowledge is required to begin integrating Cascading
Style Sheets (CSS) and JavaScript into your Zend Framework-powered website, other than the
understanding that the CSS and JavaScript files should be placed somewhere within the public
directory. For organizational purposes I suggest creating directories named css and javascript or
similar, and placing the CSS and JavaScript files within them, respectively.

For instance, with the directory and CSS files in place, you'll typically use the HTML link tag within
your site layout in order to make the CSS styles available:

<link rel="stylesheet" href="/css/screen.css"
 type="text/css" media="screen, projection">

Testing Your Work
This chapter is primarily devoted to user interface-specific features. Just as you'll want to thoroughly
test the programmatic features of your website, so will you want to not only ensure that the user
interface is rendering the expected page elements, but that the application behaves properly as the
user navigates the interface. While PHPUnit was not intended to test user interfaces, the Zend_Test
component bundles several useful features which allow you to perform rudimentary user interface
tests, several of which I'll demonstrate in this section.

Before presenting the example tests, keep in mind that thorough user interface testing is much more
involved than merely verifying the existence of certain page elements. Notably, you'll want to use

Easy PHP Websites with the Zend Framework 52

a tool such as Selenium which can actually navigate your website interface using any of several
supported web browsers (among them Firefox, Internet Explorer, and Safari). In Chapter 11 you'll
learn how to configure PHPUnit to execute Selenium tests.

Verifying Form Existence

Using the assertQueryCount() method, you can ensure that a page element is found within a
retrieved page. This is useful when you want to make sure a certain image, form, or other HTML
element has been rendered as expected. For instance, the following test ensures that exactly one
instance of a form identified by the ID login is found within the Account controller's login view:

public function testLoginActionShouldContainLoginForm()
{
 $this->dispatch('/account/login');
 $this->assertQueryCount('form#login', 1);
}

Verifying the Page Title

The Zend Framework offers a view helper named headTitle() which when output within the
view will generate the title tag and insert into it the value passed to headTitle(). You'll execute
headTitle() somewhere between the layout's head tags in order to properly render the title:

...
<head>
<?php echo $this->headTitle('Welcome to GameNomad'); ?>
</head>
...

Executing this view helper will result in the following title tag being inserted into the layout:

<head>
<title>Welcome to GameNomad</title>
</head>

Personally, I find this feature to be superfluous, as it's just as easy to add the title tag manually,
and then pass the desired view title in from the associated action, like this:

<title>
<?= (!is_null($this->pageTitle)) ? $this->pageTitle : "Welcome to GameNomad"; ?>
</title>

If you'd like to use a custom page title in conjunction with a specific view, all you need to do is
define $this->view->pageTitle within the action:

Easy PHP Websites with the Zend Framework 53

public function loginAction()
{

 $this->view->pageTitle = 'GameNomad: Login to Your Account';
 ...
}

No matter which approach you take, you can execute a test which ensures the page title is set properly
by using the assertQueryContentContains() method:

public function testLoginViewShouldContainLoginTitle()
{
 $this->dispatch('/account/login');
 $this->assertQueryContentContains('title', 'GameNomad: Login to Your Account');
}

Testing a PartialLoop View Helper

Earlier in this chapter a convenient formatting feature known as the PartialLoop view helper was
introduced. You can use a PartialLoop to separate the presentational markup from the logic used
to iterate over an array when displaying the array contents to the browser. The example used to
demonstrate the PartialLoop view helper involved iterating over an array containing three video
games, creating a link to their GameNomad pages and inserting the link into an unordered list
identified by the ID hottest. You can create a test which verifies that exactly three unordered list
items are rendered to a page:

public function testExactlyThreeHotGamesAreDisplayed()
{
 $this->dispatch('/games/platform/360');
 $this->assertQueryCount('ul#hottest > li', 3);
}

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• The Zend Framework's convenient layout feature is not enabled by default. What ZF CLI
command should you use to enable this feature?

• From which directory does the Zend Framework expect to find your website CSS, images, and
JavaScript?

Easy PHP Websites with the Zend Framework 54

• What is the name of the Zend Framework feature which can help to reduce the amount of PHP
code otherwise found in your website views?

• Which Zend Framework class must you extend in order to create a custom view helper? Where
should your custom view helpers be stored?

• Name two reasons why the Zend Framework's URL view helper is preferable over manually
creating hyperlinks?

Chapter 4. Managing
Configuration Data
Your website will likely require a fair amount of configuration-related data in order to function
properly, including database connection parameters, cache-related directory paths, and SMTP
addresses. Further, the site may refer to certain important bits of information which may occasionally
need to be changed, such as a support-related e-mail address. Making matters more difficult,
this configuration data may change according to the application's life cycle stage; for instance
when your website is in the development stage, the aforementioned support-related e-mail address
might be set to bugs@gamenomad.com, whereas when the site is public the address might be set to
support@gamenomad.com. You'll also want to adjust PHP-specific settings according to the life cycle
stage such as whether to display errors in the browser. So what's the most efficient way to manage
this data?

In the interests of adhering to the DRY principle the Zend Framework offers a great solution which
not only allows you to maintain this data in a central location, but also to easily switch between
different sets of stage-specific configuration data. In this chapter I'll introduce you to this feature
which is made available via the Zend_Config component, showing you how to use it to store and
access configuration data from a central location.

Introducing the Application Configuration File

The application.ini file (located in the application/configs directory) is the Zend Framework's
default repository for managing configuration data. Open this file and you'll see that several
configuration parameters already exist, using a category-prefixed dotted notation syntax similar to
that found in your php.ini file. For instance, the variables beginning with phpSettings will override
any settings found in the php.ini file, such as the following variable which will prevent the display
of any PHP-related errors:

phpSettings.display_errors = 0

You're free to override other PHP directives as you see fit, provided you follow the above convention,
and that the directive is indeed able to be modified outside of the php.ini file. Consult the PHP
manual for more information about each configuration directive's scope.

Easy PHP Websites with the Zend Framework 56

Note
Managing your configuration data within the application.ini file forms one of two
approaches currently supported by the Zend_Config component. It's also possible to
manage this data using an XML format, and even using an external resource such as a
MySQL database. Of the three approaches the one involving INI-formatted data seems to
be the most commonly used, and so this chapter will use INI-specific examples, although
everything you learn here can easily be adapted to the other approaches.

You can create your own configuration parameters, even grouping them according to their purpose
using intuitive category prefixes. For instance, I group my web service API keys like this:

webservice.amazon.affiliates.key = KEY_GOES_HERE
webservice.amazon.ec2.key = KEY_GOES_HERE
webservice.google.maps.key = KEY_GOES_HERE

The second way configuration parameters are organized is according to the application's life cycle
stage. For instance, notice that the phpSettings.display_errors parameter is set to 0 within
the [production] section. This is because when the website is deployed in a live environment,
you don't want to display any ugly errors to the end user. If you scroll down the file to the
section [development:production], you'll find the very same variable defined again, but this time
phpSettings.display_errors is set to 1 (enabled). This is because when your website is in the
development stage, you'll want to see these errors in real-time as they occur while you develop the
site.

To save unnecessary repetition, life cycle stages can be configured to inherit from another. For
instance, the syntax [development: production] indicates that the development stage will inherit
any configuration variables defined within the production stage. You can override those settings by
redefining the variable, as we did with the display_errors variable.

You'll also see other default variables defined in the application.ini file. For example, the
following variable identifies the location where your application controllers are found:

resources.frontController.controllerDirectory = APPLICATION_PATH "/controllers"

As you might imagine, these sorts of variables are useful if you wanted to change the Zend
Framework's default settings, although in most cases you won't need to tinker with them.
Unfortunately there's currently no definitive list of all of the available variables, however as you
explore other features of the Zend Framework you'll undoubtedly come across the variables you need
to add the feature. Throughout this book I'll occasionally be referencing other variables as needed.

Easy PHP Websites with the Zend Framework 57

Setting the Application Life Cycle Stage
The .htaccess file introduced in Chapter 2 serves a primary role of forwarding all requests to
the front controller. However, it also serves a secondary role of providing a convenient location to
define your application's life cycle stage. For instance, to define the stage as development, open the
.htaccess file (located in the /public/ directory) and add the following line at the top of the file:

SetEnv APPLICATION_ENV development

Once saved, the framework will immediately begin using the configuration parameters defined
within the [development] section of the application.ini file.

Tip
You're not constrained to using solely the four default stages defined within the
application.ini file. Feel free to add as many custom stages as your please!

While defining the APPLICATION_ENV in the .htaccess file is no doubt convenient, you'll still need to
modify this variable when migrating your website from one staging server to another. Neglecting to
do so will logically result in unexpected consequences, such as continuing to display website errors
within the browser on your production server because you forgot to update the APPLICATION_ENV
variable to production. You can eliminate such gaffes entirely by automating the migration process
using a utility such as Phing.

Accessing Configuration Parameters

Naturally you'll want to access some of these configuration parameters within your controllers, and
in the case of end-user parameters such as e-mail addresses, within your views. There are several
different approaches available for accessing this data. In this section, I'll introduce you to each
approach, concluding with the solution which I believe to be most practical for most applications.

Accessing Configuration Data From a Controller Action

Most newcomers to the Zend Framework are happy with simply understanding how to access the
configuration data from within a controller action, which is certainly understandable although in
most cases it's the most inefficient approach because it results in duplicating a certain amount of
code each time you want to access the data from within a different action. Nonetheless it's useful to
understand how this is accomplished because if anything it will demonstrate the syntax employed
by all approaches. You can use the following command to load all parameters defined within
application.ini file into an array:

Easy PHP Websites with the Zend Framework 58

$options = $this->getInvokeArg('bootstrap')->getOptions();

The getInvokeArg() call retrieves an instance of the bootstrap object which is invoked every time
the front controller responds to a request. This object includes the getOptions() method which
can be used to retrieve a multidimensional array consisting of the defined stage's configuration
parameters. For instance, you can retrieve the Google Maps API key referenced in an earlier example
using the following syntax:

echo $options['webservices']['google']['maps']['api'];

I think the multidimensional array syntax is a bit awkward to type, and instead prefer an object-
oriented variant also supported by the Zend Framework. To use this variant, you'll need to load the
parameters into an object by passing the array into the Zend_Config class constructor:

$options = new Zend_Config($this->getInvokeArg('bootstrap')->getOptions());

This approach allows you to use object notation to reference configuration parameters like so:

$googleMapsApiKey = $options->webservices->google->maps->api->key;

Using the Controller's init() Method to Consolidate Code

If you plan on using configuration parameters throughout a particular controller, eliminate the
redundant calls to the getOptions() method by calling it from within your controller's init()
method.

public function init()
{
 $this->options = new Zend_Config($this->getInvokeArg('bootstrap')->getOptions());
}
...
public function contactAction()
{
 $this->view->email = $this->options->company->email->support;
}

Accessing Configuration Parameters Globally Using
Zend_Registry

While retrieving the options within the init() method is an improvement over the first approach,
we're still not as DRY as we'd like to be if it's necessary to access configuration parameters within
multiple controllers. Therefore my preferred approach is to automatically make the options globally

Easy PHP Websites with the Zend Framework 59

available by assigning the object returned by Zend_Config to a variable stored within the application
registry. This registry is managed by a Zend Framework component called Zend_Registry. You can
use this registry to set and retrieve variables which are accessible throughout the entire application.
Therefore by assigning the configuration parameters object to a registry variable from within
the bootstrap, this variable will automatically be available whenever needed from within your
controllers.

As discussed in the Chapter 2, tasks performed within the application bootstrap are typically grouped
into methods, with each method appropriately named to identify its purpose. Each time the bootstrap
runs (which occurs with every request), these methods will automatically execute. Therefore to load
the configuration object into the registry, you should create a new method within the bootstrap, and
call the appropriate commands within, as demonstrated here:

protected function _initConfig()
{
 $config = new Zend_Config($this->getOptions());
 Zend_Registry::set('config', $config);
 return $config;
}

With the configuration object now residing in a registry variable, you'll be able to retrieve it within
any controller action simply by calling the Zend_Registry component's static get method. This
means you won't have to repetitively retrieve the configuration data from within every controller
init() method! Instead, you can just retrieve the configuration parameters like this:

$this->view->supportEmail =
 Zend_Registry::get('config')->company->email->support;

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Which Zend Framework component is primarily responsible for simplifying the accessibility of
project configuration data from a central location?

• What is the name and location of the default configuration file used to store the configuration data?

• Describe how the configuration data organized such that it is possible to define stage-specific
parameters.

• What is the easiest way to change your application's life cycle stage setting?

Chapter 5. Creating Web Forms
with Zend_Form
When I was first acquainted with the Zend Framework back in 2008, the Zend_Form component was
the lone feature which I was convinced was a horribly misguided implementation. I simply could not
understand why any sane developer would want to programmatically generate HTML forms when
they are so easy to write manually.

As it turns out, it was I who was horribly misguided. While HTML forms can indeed be created in
mere minutes, the time and effort required to write the code used to populate, process, validate, and
test these forms can be significant. It is here where Zend_Form's power is apparent, as it can greatly
reduce the time and effort needed to carry out these tasks. Further, you won't lose any control over
the ability to format and stylize forms!

In my experience Zend_Form is the most difficult of the Zend Framework's components, largely
because of the radical shift towards the programmatic creation of forms. Therefore you'll likely
need to remain patient while making your first forays into creating and validating forms using this
component. I'll do my best to guide you through the process and make you aware of potential gotchas
as we work through the chapter.

Caution
While this chapter will indeed provide a detailed introduction to Zend_Form, I've decided
to spend little time talking about the many rendering options at your disposal. Instead, I'm
going to focus upon what I believe to be the rendering solution which will appeal to the
vast majority of readers who wish to balance Zend_Form's convenient form processing
and validation features with the ability to maintain control over the form's layout and
styling. However, in order to ensure you fully understand many of the most confusing
issues surrounding Zend_Form's approach to rendering forms, several of this chapter's early
examples will employ a trial-and-error approach, showing you how the form's appearance
changes with each iteration.

Creating a Form with Zend_Form

You'll use Zend_Form's class methods to not only create the form, but also validate form data and
even determine how the form is presented to the user. To create a form you'll invoke the Zend_Form

Easy PHP Websites with the Zend Framework 61

class, create the form field objects using a variety of classes such as Zend_Form_Element_Text, and
then add those form field objects to the form using methods exposed through the Zend_Form class.

I'd imagine this sounds pretty elementary, however there's a twist to the approach which causes a
great deal of confusion among newcomers to framework-driven development. You'll actually want to
encapsulate each form within a model! This is a preferable approach because the model can contain
all of the functionality required to manage the form data and behavior, not only resulting in easier
maintainability but also allowing you to easily reuse that model within multiple applications. Let's
use this approach to create the model used to sign registered GameNomad users into their accounts.

Begin by using the ZF CLI to create the model. You're free to name the model however you please,
although I suggest choosing a name which clearly identifies the model as a form. For instance I
preface all form-specific models with the string Form (for instance FormLogin, FormRegister, and
FormForgetPassword):

%>zf create model FormLogin
Creating a model at /var/www/dev.gamenomad.com/application/models/FormLogin.php
Updating project profile '/var/www/dev.gamenomad.com/.zfproject.xml'

Next open up the FormLogin.php file, located in the directory application/models/, and add a
constructor method containing the following elements (also note that the class definition has also
been modified so that it extends the Zend_Form class:

01 <?php
02
03 class Application_Model_FormLogin extends Zend_Form
04 {
05
06 public function __construct($options = null)
07 {
08
09 parent::__construct($options);
10 $this->setName('login');
11 $this->setMethod('post');
12 $this->setAction('/account/login');
13
14 $email = new Zend_Form_Element_Text('email');
15 $email->setAttrib('size', 35);
16
17 $pswd = new Zend_Form_Element_Password('pswd');
18 $pswd->setAttrib('size', 35);
19
20 $submit = new Zend_Form_Element_Submit('submit');
21
22 $this->setDecorators(array(array('ViewScript',

Easy PHP Websites with the Zend Framework 62

23 array('viewScript' => '_form_login.phtml'))));
24
25 $this->addElements(array($email, $pswd, $submit));
26
27 }
28
29 }

Let's review this example:

• Line 03 defines the model. Note how this model extends the Zend_Form class. When you generate
a model using the zf tool, this extension isn't done by default so you'll need to add the extension
syntax manually.

• Line 06 defines a class constructor method. All of the remaining code found in this example is
encapsulated in this constructor because we want the code to automatically execute when the
model object is created within the controller. Note how this constructor can also accept a lone
parameter named $options. I'll talk more about the utility of this parameter in the section "Passing
Options to the Constructor".

• Line 09 calls the class' parent constructor, which is required in order to properly initialize the
Application_Model_FormLogin class.

• Line 10 defines the form's name, which can be used to associate CSS styles and Ajax-based
functionality. Line 11 defines the form method, which can be set to get or post. Line 12 defines
the form action, which points to the URL which will process the form data. In order to ensure
maximum model portability, you may not want to hard wire these values and instead want to pass
them through the constructor. I'll show you how this is done in the section "Passing Options to
the Constructor".

• Lines 14 and 15 define the text field which will accept the user's e-mail address. The email value
passed into the Zend_Form_Element_Text constructor will be used to set the field's name.

• Lines 17 and 18 define the password field which will accept the user's password. The
Zend_Form_Element_Password class is used instead of Zend_Form_Element_Text because the
former will present a text field which masks the password as the user enters it into the form.

• Line 20 defines a submit field used to represent the form's Submit button.

• Lines 22-23 defines the view script which will be used to render this form. I'll talk more about
this form in the next section.

Easy PHP Websites with the Zend Framework 63

• Line 25 adds all of the form elements defined in lines 12-18 to the form object. It is also possible
to add each separately using the addElement() method however using addElements() will save
you a few keystrokes.

Notice how this model places absolutely no restrictions on how the form will actually be presented
to the user, other than to reference a script named _form_login.phtml which contains the form's
formatting instructions (more on this in the next section). Let's move on to learn how the form is
rendered.

Rendering the Form

To render a form, all you need to do is instantiate the class within your controller, and then assign
that object to a variable made available to the view, as demonstrated here:

public function loginAction()
{

 $form = new Application_Model_FormLogin();

 $this->view->form = $form;

}

Within the application/views/account/login view you'll need to echo the $this->view:

<?= $this->form; ?>

Finally, create the file named _form_login.phtml (placing it within application/views/scripts)
which was referenced within the FormLogin model. This file is responsible for rendering the form
exactly as you'd like it to appear within the browser.

<form id="login" action="<?= $this->element->getAction(); ?>"
 method="<?= $this->element->getMethod(); ?>">
<p>
E-mail Address

<?= $this->element->email; ?>
</p>
<p>
Password

<?= $this->element->pswd; ?>
</p>

<p>
<?= $this->element->submit; ?>

Easy PHP Websites with the Zend Framework 64

</p>

</form>

Calling http://dev.gamenomad.com/account/login within the browser, you should see the form
presented in Figure 5.1.

Figure 5.1. Creating a form with Zend_Form

The form rendered just fine, however you might notice that the spacing seems a bit odd. To
understand why, use your browser's View Source feature to examine the form HTML. I've reproduced
it here for easy reference:

<form id="login" action="/account/login" method="post">
<p>
E-mail Address

<dt id="email-label">&</dt>
<dd id="email-element">
<input type="text" name="email" id="email" value="" size="35"></dd></p>
<p>
Password

<dt id="pswd-label">&</dt>
<dd id="pswd-element">
<input type="password" name="pswd" id="pswd" value="" size="35"></dd></p>

<p>
<dt id="submit-label">&</dt><dd id="submit-element">

<input type="submit" name="submit" id="submit" value="Login"></dd></p>

</form>

Easy PHP Websites with the Zend Framework 65

Where did all of those dt and dd tags come from? They are present because Zend_Form is packaged
with a number of default layout decorators which will execute even if you define a view script within
the model. A decorator is a design pattern which makes it possible to extend the capabilities of an
object. In the case of Zend_Form, these decorators determine how each form field will be rendered
within the browser. Why the developers chose the dt and dd tags over others isn't clear, although one
would presume it has to do with the ability to easily stylize these tags using CSS. Even so, I doubt
you want these decorators interfering with your custom layout, so you'll want to suppress them.
This is accomplished easily enough using the removeDecorator() method. Because the decorator is
associated with each form field object, you'll need to call removeDecorator() every time you create
a form field, as demonstrated here:

$email = new Zend_Form_Element_Text('email');
$email->setAttrib('size', 35)
 ->removeDecorator('label')
 ->removeDecorator('htmlTag');

In this example I'm removing the decorator used to remove the default label formatting in addition
to the label used to format the field itself. Execute /account/login again and you'll see the form
presented in Figure 5.2.

Figure 5.2. Removing the default Zend_Form decorators

This is clearly an improvement, however if you again examine the source code underlying this form,
you'll see that the submit button is still rendered using a default decorator, even if you explicitly
removed the htmlTag decorator from the Zend_Form_Element_Submit object. This is because the
Zend_Form_Element_Submit does not support the htmlTag decorator. Instead, you'll want to remove
the DtDdWrapper decorator:

$submit = new Zend_Form_Element_Submit('submit');
$submit->setLabel('Login');
$submit->removeDecorator('DtDdWrapper');

With this change in place, call /account/login anew and you'll see the form presented in Figure 5.3.

Easy PHP Websites with the Zend Framework 66

Figure 5.3. Controlling form layout is easy after all!

This is just one approach to maintaining control over your form's presentation when using
Zend_Form, and in fact more sophisticated solutions are available. In fact, the easiest solution might
involve simply stylizing the dt and dd tags using CSS. However, for the majority of readers, present
party included, the approach described here is quite satisfactory.

Passing Options to the Constructor

I mentioned earlier in this chapter the utility of being able to reuse models across applications. In
fact, you'll probably want to reuse models several times within the same application, because of the
need to not only insert data, but also later modify it. Although multiple actions will be involved in
carrying out these tasks /location/insert and /location/update for instance), there's no reason
you should maintain separate forms! Fortunately, changing the form model's action setting is easy,
done by passing the desired setting through the form's object constructor:

$form = new Application_Model_FormLocation(array('action' => '/locations/add'));

You'll also need to modify the form model so that the setAction() method refers to the passed
associative array value rather than a hardwired setting:

$this->setAction($options['action']);

Of course, you're not limited to setting solely the form action; just expand the number of associative
array keys and corresponding values as you see fit.

Processing Form Contents

Now that you know how to define a form object and render its contents, let's write the code used to
process the form input and return feedback to the user. The execution path this task takes depends
on whether the user has submitted the form:

Easy PHP Websites with the Zend Framework 67

• Form not submitted: If the form has not been submitted, render it to the browser, auto-populating
the fields if necessary.

• Form submitted: If the form has been submitted, validate the input. If any of the input is deemed
invalid, notify the user of the problem, display the form again, and populate the form with the
previously submitted input as a convenience to the user. If the form input is valid, process the
data and notify the user of the outcome.

Let's tackle each of these problems independently, and then assemble everything together at the
conclusion of the section.

Determining if the Form Has Been Submitted

The Zend Framework's request object offers a useful method called getPost() which can determine
if the incoming request has been made using the POST method. If it has, you can use the request
object's getPost() method to retrieve the input values (this method was introduced in Chapter 2).
The request object's isPost() method returns TRUE if the request has been POSTed, and FALSE
if not, meaning you can evaluate it within an if-conditional statement, like this:

public function loginAction()
{

 $form = new Application_Model_FormLogin();

 if ($this->getRequest()->isPost()) {

 $email = $form->getValue('email');
 $pswd = $form->getValue('pswd');

 echo "<p>Your e-mail is {$email}, and password is {$pswd}</p>";

 }

 $this->view->form = $form;

}

Try executing the revised /account/login action, completing and submitting the form. When
submitted, you should see your e-mail address and password echoed back to the browser.

Easy PHP Websites with the Zend Framework 68

Validating Form Input

Of course, the previous example doesn't prevent you from entering an invalid e-mail address or
password, including none at all. To make sure a form field isn't blank, you can associate the
setRequired() method with the form field, like this:

$email = new Zend_Form_Element_Text('email');
$email->setAttrib('size', 35);
$email->setRequired(true);

Merely adding the validator to your model won't result in it being enforced. You also need to adjust
the login action so that the isValid() method is called, passing the POSTed data as the method's
lone parameter:

public function loginAction()
{

 $form = new Application_Model_FormLogin();

 if ($this->getRequest()->isPost()) {

 if ($form->isValid($this->_request->getPost()))
 {
 echo "<p>VALID INPUT!</p>";
 }

 }

 $this->view->form = $form;

}

With the validator and action logic in place, the Zend Framework will automatically associate
an error message with the invalid field even if you override the default form layout using the
setDecorators() method as we did earlier in the chapter. As an added bonus, it will automatically
retain the entered form values (whether valid or not) as a convenience for the user. The error message
associated with the e-mail address form field is demonstrated in Figure 5.4.

Easy PHP Websites with the Zend Framework 69

Figure 5.4. Displaying a validation error message

Tip

Chances are you'll want to modify the error messages' default text, or perhaps group
all messages elsewhere rather than next to each form field. If so, see the later section
"Displaying Error Messages".

While ensuring a field isn't blank is a great idea, you'll often need to take additional validation
steps. Zend_Form takes into consideration the vast majority of your validation needs by integrating
with another powerful Zend Framework component named Zend_Validate. The Zend_Validate
component is packaged with over two dozen validators useful for verifying the syntactical
correctness of an e-mail address, credit card number, IP address or postal code, determining whether
a string consists solely of digits, alphanumerical characters, and ensuring numbers fall within a
certain range. You can also use Zend_Validate to compare data to a regular expression and can even
define your own custom validators. A partial list of available validators is presented in Table 5-1.

Table 5.1. Useful Zend_Form Validators

Name Description

Alnum Determines whether a value consists solely of alphabetic and
numeric characters

Alpha Determines whether a value consists solely of alphabetic
characters

Between Determines whether a value falls between two predefined
boundary values

Easy PHP Websites with the Zend Framework 70

Name Description

CreditCard Determines whether a credit card number meets the specifications
associated with a given credit card issuer. All major
issuing institutions are supported, including American Express,
MasterCard, Solo and Visa.

Date Determines whether a value is a valid date provided in the format
YYYY-MM-DD

Db_RecordExists Determines whether a value is found in a specified database table

Digits Determines whether a value consists solely of numeric characters

EmailAddress Determines whether a value is a syntactically correct e-mail
address as defined by RFC2822. This validator is also capable
of determining whether the domain exists, whether MX records
exist, and whether the domain's server is accepting e-mail.

Float Determines whether a value is a floating-point number

GreaterThan Determines whether a value is greater than a predefined a
minimum boundary

Identical Determines whether a value is identical to a predefined string

InArray Determines whether a value is found within a predefined array

Ip Determines whether a value is a valid IPv4 or IPv6 IP address

Isbn Determines whether a value is a valid ISBN-10 or ISBN-13
number

NotEmpty Determines whether a value is not blank

Regex Determines whether a value meets the pattern defined by a regular
expression

You can associate these validators with a form field using the Zend_Form addValidator() method.
As an example, consider GameNomad's user registration form /account/register). Obviously
we'll want the user to provide a valid e-mail address when registering, and so define the form field
within the registration form model /application/models/FormRegister.php like this:

$email = new Zend_Form_Element_Text('email');
$email->setAttrib('size', 35);
$email->setRequired(true);
$email->addValidator('emailAddress');

Easy PHP Websites with the Zend Framework 71

Submitting an invalid e-mail address produces the error message depicted in Figure 5.5.

Figure 5.5. Notifying the user of an invalid e-mail address

Several validators require you to specify boundaries in order for the validator to work properly. For
instance, the StringLength validator will ensure that a string consists of a character count falling
between a specified minimum and maximum. This can be useful for making sure that the user
chooses a password consisting of a certain number of characters. The following example can be used
to make sure that a registering user's password consists of 4-15 characters:

$pswd = new Zend_Form_Element_Password('pswd');
$pswd->setAttrib('size', 35);
$pswd->setRequired(true);
$pswd->addValidator('StringLength', false, array(4,15));

You might be wondering about the mysterious second parameter in the above reference
to addValidator(). When specifying boundary values, you'll need to also supply the
addValidator()'s "chain break" parameter, which is by default set to false. This parameter
determines whether the next validator will execute if the previous validator fails. Because the default
is false, the Zend Framework will attempt to execute all validators even if one fails. If you change
this value to true, validation will halt immediately should one of the validators fail.

Easy PHP Websites with the Zend Framework 72

Displaying Error Messages

As you witnessed from previous examples, default error messages are associated with each validator.
However these messages aren't particularly user friendly, and so you'll probably want to override
these messages with versions more suitable to your website audience. To create a custom error
message, use the addErrorMessage() as demonstrated here:

$pswd = new Zend_Form_Element_Password('pswd');
$pswd->setAttrib('size', 35);
$pswd->setRequired(true);
$pswd->addValidator('StringLength', false, array(4,15));
$pswd->addErrorMessage('Please choose a password between 4-15 characters');

Customizing Your Messages' Visual Attributes

To further customize these messages, use your browser's View Source feature to examine how the
error messages are rendered and you'll see that each message is associated with a CSS class named
errors:

<ul class="errors">Please provide a valid e-mail address

You can use this CSS class to customize the color, weight and other attributes of these messages.

Grouping Messages

If you prefer to group error messages together rather than intersperse them throughout the form,
use Zend_Form's getErrors() method. This method returns an associative array consisting of form
element names and error messages. This method does behave a bit odd in that it will always return
an array associated with the form's submit button, meaning you'll need to account for the blank value
when formatting the errors. For instance, the following output is indicative of what you'll find when
using PHP's var_dump() method to display the array contents:

array(3) {
 ["email"]=> array(1) { [0]=>
 string(37) "Please provide a valid e-mail address" }
 ["pswd"]=> array(1) {
 [0]=> string(28) "Please provide your password" }
 ["submit"]=> array(0) { }
}

Of course in order to access this error message array you'll need to pass it to the view. To do so,
modify the Account controller's login action so that the errors are retrieved if the isValid() method
returns FALSE:

Easy PHP Websites with the Zend Framework 73

if ($form->isValid($this->_request->getPost()))
{
 echo "<p>VALID INPUT!</p>";
} else {
 $this->view->errors = $form->getErrors();
}

Using a custom view helper (custom view helpers were introduced in Chapter 3) you can
conveniently encapsulate the error message format and display logic, producing output such as that
presented in Figure 5.6.

Figure 5.6. Displaying a validation error message

To create the message format shown in Figure 5.6 I've created the following Errors view helper
(name this file Errors.php and place it in your application/views/helpers/ directory):

class Zend_View_Helper_Errors extends Zend_View_Helper_Abstract
{

 /**
 * Outputs errors using a uniform format
 *
 * @param Array $errors
 * @return nil
 */
 public function Errors($errors)

Easy PHP Websites with the Zend Framework 74

 {

 if (count($errors) > 0) {
 echo "<div id='errors'>";
 echo "";
 foreach ($errors AS $error) {
 if ($error[0] != "") {
 printf("%s", $error[0]);
 }
 }
 echo "";
 echo "</div>";
 }
 }

}

With the view helper created, all that's left is to modify the login.phtml view to output the errors
if any exist:

<h3>Login to Your GameNomad Account</h3> <?= $this->Errors($this->errors); ?> <?= $this-
>form; ?>

Completing the Process

Should the isValid() method return TRUE, meaning that all fields have met their validation
requirements, then you'll need to process the data. Exactly what this entails depends upon what you
intend on doing with the form data. For instance, you might insert the data into a database, initiate an
authenticated user session, or e-mail the form data to a technical support team. All of these tasks are
topics for later chapters so while I'd prefer to avoid putting the cart ahead of the horse and dive into
concepts that have yet to be introduced, it would be nonetheless useful to offer a complete example
which shows you just how succinct your code can really be when taking full advantage of Zend_Form
and models such as FormLogin. The following example presents a typical login action, responsible
for presenting the login form, validating submitted form data, attempting to authenticate the user and
initiate a new session if the form data is valid, updating the user's account record to reflect the latest
successful login timestamp, and displaying errors or other notifications based on the authentication
attempt outcome. All of these tasks are accomplished in 50 lines of succinct, user-friendly code! The
code is presented, followed by a brief summary. Don't worry about understanding all of the syntax
for now as I'll be introducing it in great detail in later chapters; instead just marvel at the simple,
straightforward approach used to accomplish these tasks.

01 public function loginAction()
02 {

Easy PHP Websites with the Zend Framework 75

03
04 $form = new Application_Model_FormLogin();
05
06 if ($this->getRequest()->isPost()) {
07
08 if ($form->isValid($this->_request->getPost())) {
09
10 $db = Zend_Db_Table::getDefaultAdapter();
11 $authAdapter = new Zend_Auth_Adapter_DbTable($db);
12
13 $authAdapter->setTableName('accounts');
14 $authAdapter->setIdentityColumn('email');
15 $authAdapter->setCredentialColumn('pswd');
16 $authAdapter->setCredentialTreatment('MD5(?) and confirmed = 1');
17
18 $authAdapter->setIdentity($form->getValue('email'));
19 $authAdapter->setCredential($form->getValue('pswd'));
20
21 $auth = Zend_Auth::getInstance();
22 $result = $auth->authenticate($authAdapter);
23
24 // Did the user successfully login?
25 if ($result->isValid()) {
26
27 $account = new Application_Model_Account();
28
29 $lastLogin = $account->findByEmail($form->getValue('email'));
30
31 $lastLogin->last_login = date('Y-m-d H:i:s');
32
33 $lastLogin->save();
34
35 $this->_helper->flashMessenger->addMessage('You are logged in');
36 $this->_helper->redirector('index', 'index');
37
38 } else {
39 $this->view->errors["form"] = array("Login failed.");
40 }
41
42 } else {
43 $this->view->errors = $form->getErrors();
44 }
45
46 }
47
48 $this->view->form = $form;
49
50 }

Easy PHP Websites with the Zend Framework 76

Let's review the code:

• Line 04 instantiates the FormLogin model as has been demonstrated throughout this chapter.

• Line 06 determines whether the form has been submitted. If so, form validation and subsequent
attempts to authenticate the user will ensue.

• Lines 10-22 attempt to authenticate the user by consulting a database table named accounts. This
topic is discussed in great detail in Chapter 8.

• If authentication was successful (as determined by line 25), lines 27-33 update the successfully
authenticated user's last_login attribute within his database record to reflect the current
timestamp.

• Lines 35-36 are responsible for letting the user know he has successfully logged into the site and
redirecting him to the home page. This is known as a flash message, a great feature I'll introduce
in the next section.

• Lines 38 and 44 account for any errors which have cropped up as a result of attempting to
authenticate the user. Notice how line 38 in particular embraces the same format used by
Zend_Form.

Introducing the Flash Messenger

Your users are busy people, and so will appreciate for any steps you can take to reduce the number of
pages they'll need to navigate when creating a new account or logging into the website. For instance,
following a successful login it would be beneficial to automatically transport users to the page they
will most likely want to visit first. At the same time you'll want to make it clear to the user that he
did successfully login to his account. So how can you simultaneously complete both tasks?

Most modern web frameworks, the Zend Framework included, solve this dilemma by offering a
feature known as a flash messenger. The flash messenger is a mechanism which allows you to create
a notification message within one action and then display that message when rendering the view of
another action. This feature was demonstrated in lines 35-36 of the previous example:

$this->_helper->flashMessenger->addMessage('You are logged in');
$this->_helper->redirector('Index', 'index');

The first line of this example uses the built-in flash messenger's addMessage() method to define the
notification message. Next, the user is redirected to the Index controller's index action.

Easy PHP Websites with the Zend Framework 77

Although flash messages may be defined within any action and conceivably displayed in any other,
chances are there will only be a select few where the latter will occur. Therefore you could either
embed the following code in the action whose view will display a flash message, or within a
controller's init() method:

if ($this->_helper->FlashMessenger->hasMessages()) {
 $this->view->messages = $this->_helper->FlashMessenger->getMessages();
}

You can however consolidate the view-specific code to your layout.phtml file, adding the following
code wherever you would like the messages to appear:

<?php
if (count($this->messages) > 0) {
 printf("<div id='flash'>%s</div>", $this->messages[0]);
}
?>

This presumes you're only interested in the first message. While it's possible to pass and display
several messages, I've not had to do so and therefore am only worried about the first array element.

With the flash messenger integrated, you'll see a flash message displayed after successfully logging
into your GameNomad account. This feature is depicted in Figure 5.7.

Figure 5.7. Using the flash messenger

Populating a Form
Whether you're creating administrative interfaces for managing product information, or would like
to provide registered users with the ability to manage their account profiles, you'll need to know
how to prepopulate forms with data retrieved from some data source, presumably a database. As it
turns out, populating Zend Framework forms is surprisingly easy, requiring you to simply create an

Easy PHP Websites with the Zend Framework 78

associative array containing keys which match the form field names, and the keys' respective values
which you'd like to prepopulate the fields. With this array created, you'll pass it to the form object's
setDefaults() method:

$form = new Application_Model_FormProfile();

$data = array(
 'username' => 'wjgilmore',
 'email' => 'wj@example.com',
 'zip_code' => '43201'
);

$form->setDefaults($data);

$this->view->form = $form;

Populating Select Boxes

All of the examples provided so far in this chapter involve the simplest of form controls, namely
text fields and submit buttons. However, many real-world forms will often be much more complex,
incorporating a selection of more advanced controls such as check boxes, radio buttons and select
boxes. The latter is often a source of confusion to new Zend_Form users because of the need
to populate the control with eligible values. As it turns out, once you know the syntax the task
is quite easy, requiring you to create an associative array containing the set of select box keys
and corresponding values, and then pass that array to the Zend_Form_Element_Select object's
AddMultiOptions() method:

$status = new Zend_Form_Element_Select('status');

$options = array(
 1 => "On the Shelf",
 2 => "Currently Playing",
 3 => "For Sale",
 4 => "On Loan"
);

$status->AddMultiOptions($options);

While the above approach is useful when you're certain the select box values won't change, its
commonplace for these values to be more fluid and therefore preferably retrieved from a database.
Therefore at risk of getting ahead of myself, this nonetheless seems an appropriate time to show you
at least one of several easy ways to populate a select box dynamically using data retrieved from a
database by way of the Zend_Db component. The Zend_Db component includes a useful method
called fetchPairs() which can retrieve a result set as a series of key-value pairs. This feature is

Easy PHP Websites with the Zend Framework 79

ideal for populating a select box, since this particular data format is precisely what we want to pass
to the addMultiOptions() method:

$db = Zend_Db_Table_Abstract::getDefaultAdapter();

$options = $db->fetchPairs(
 $db->select()->from('status', array('id', 'name'))
 ->order('name ASC'), 'id');

$status = new Zend_Form_Element_Select('status');

$status->AddMultiOptions($options);

Don't worry if this syntax doesn't make any sense, as it will be thoroughly introduced in Chapter 6.

Testing Your Work
There are few tasks more time-consuming and annoying than testing web forms to determine whether
they are working correctly. Fortunately, it's possible to automate a great deal of the testing using unit
tests. We can create tests which ensure that the form is rendering correctly, that input is properly
validated, and that the form data is saved to the database, among others. In this section I'll show you
how to write tests which carry out these tasks.

Making Sure the Contact Form Exists

To make sure the contact form exists and includes the expected fields, you can use the
assertQueryCount() method to confirm that a particular element and associated DIV ID exist within
the rendered page, as demonstrated here:

public function testContactActionContainsContactForm()
{
 $this->dispatch('/about/contact');
 $this->assertQueryCount('form#contact', 1);
 $this->assertQueryCount('input[name~="name"]', 1);
 $this->assertQueryCount('input[name~="email"]', 1);
 $this->assertQueryCount('input[name~="message"]', 1);
 $this->assertQueryCount('input[name~="submit"]', 1);
}

Testing Invalid Form Values

The Zend Framework's input validators have been thoroughly tested by the development team, so
when testing your forms the concern doesn't lie in making sure validators such as the EmailAddress
validator are properly detecting invalid e-mail addresses, but rather in making sure that you have

Easy PHP Websites with the Zend Framework 80

properly integrated the validators into your form model. Let's create a test which determines whether
GameNomad's contact form (http://www.gamenomad.com/about/contact) is properly validating
the supplied input before e-mailing the contact request to the support staff. This form is presented
in Figure 5.8.

Figure 5.8. GameNomad's Contact Form

This form requires the visitor to supply a name, e-mail address, and a message, with the validators
ensuring the name and message fields aren't blank, and that the e-mail address field contains a
syntactically valid e-mail address. Should any of these validations fail, the errors will be rendered to
the page using the custom Errors view helper introduced earlier in this chapter. If the validations all
pass, then the e-mail will be sent and the user will be redirected to the home page. Therefore we can
generally determine whether any validations fail by asserting the redirection hasn't occurred, or more
specifically by examining the errors DIV element used to display the error messages. Let's run with
the former scenario and in later chapters I'll show you how to focus on specific error messages to
determine exactly what failed.

Easy PHP Websites with the Zend Framework 81

Because there exists far more than one set of invalid data, we're going to use a great PHPUnit feature
known as a data provider to iterate over multiple sets of invalid data in order to ensure the validators
are properly detecting multiple errant fields. You'll place these invalid permutations within an array
found in an aptly-named method, placing the method within the AboutControllerTest.php class:

public function invalidContactInfoProvider()
{
 return array(
 array("Jason Gilmore", "", "Name and Message but no e-mail address"),
 array("", "wj@example.com", "E-mail address and message but no name"),
 array("", "", "No name or e-mail address"),
 array("No E-mail address or message", "", ""),
 array("Jason Gilmore", "InvalidEmailAddress", "Invalid e-mail address")
);
}

Notice how this array is returned the moment this method is executed. This is required in order for
PHPUnit's data provider feature to operate properly. Next, we'll define the test which uses this data
provider:

01 /**
02 * @dataProvider invalidContactInfoProvider
03 */
04 public function testIsInvalidContactInformationDetected($name, $email, $message)
05 {
06
07 $this->request->setMethod('POST')
08 ->setPost(array(
09 'name' => $name,
10 'email' => $email,
11 'message' => $message
12));
13
14 $this->dispatch('/about/contact');
15
16 $this->assertNotRedirectTo('/');
17
18 }

This example includes several important test-related features, so let's review the code:

• Line 02 defines the data provider method used by the test using the @dataProvider annotation.
You must include this line in order for PHPUnit to be able to access the array of test values found
in the data provider method!

Easy PHP Websites with the Zend Framework 82

• Notice how line 04 is passing in three input parameters which correspond to the three elements
found in each instance of the data provider's multidimensional array. Obviously you will adjust
this number upwards or downwards depending upon the number of test values found in other data
providers.

• Lines 07-12 set the request method to POST, and assign the three input parameters to an
associative array which will be sent along with the POST request.

• Line 14 issues the resource request, identifying the About controller's contact action.

• Finally, line 16 ensures that the user is not redirected to the GameNomad home page, which would
mean that at least one of the provided data sets validated properly.

Testing Valid Form Values

The previous test ran the GameNomad contact feature through a battery of scenarios involving
invalid user data. Likewise, we'll also want to verify that the feature will properly accept and
process valid input. This test behaves identically to the previous, except that this time we can just
pass one set of valid input, and additionally use the assertRedirectTo() method rather than the
assertNotRedirectTo() method to ensure the redirection occurs as expected:

public function testIsValidContactInformationEmailedToSupport()
{

 $this->request->setMethod('POST')
 ->setPost(array(
 'name' => 'Jason Gilmore',
 'email' => 'wj@wjgilmore.com',
 'message' => "This is my test message."
));

 $this->dispatch('/about/contact');

 $this->assertRedirectTo('/');

}

When the provided user input is deemed valid, GameNomad's contact action will send an e-mail
containing the visitor's message and contact information to the e-mail address defined within the
application configuration file's email.support parameter. Because you'll presumably be regularly
running the test suite, consider pointing the e-mails to a specially designated testing account by
overriding the email.support parameter within the configuration file's [testing : production]
section.

Easy PHP Websites with the Zend Framework 83

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Name two reasons why the Zend_Form component is preferable to creating and processing forms
manually.

• Describe in a paragraph how Zend_Form can be configured so as to allow certain forms to be
used for both inserting and later modifying data.

• How does the Flash Messenger feature streamline a user's website interaction?

• What is the role of PHPUnit's data provider feature?

Chapter 6. Talking to the
Database with Zend_Db
Even the simplest website will likely rely upon a database for data management, meaning you're
going to devote a great deal of time writing code which passes data between the PHP logic
responsible for driving your application and the SQL code which interacts with the database. This
common practice of mixing SQL with the rest of your website's logic is counteractive to the goal
of separating the application's data, logic, and presentation tiers. So what's a developer to do? After
all, it's clearly not possible to do away with the database, but using one at the cost of sacrificing
efficiency and sound development practices seems an impractical tradeoff.

The Zend Framework attempts to lessen the pain by providing an object-oriented interface named
Zend_Db which you can use to talk to a database without having to intermingle SQL and application
logic. In this chapter you'll learn all about Zend_Db, along the way gaining valuable experience
building key features which will provide you with a sound working understanding of this important
aspect of the Zend Framework.

Because the Zend_Db component is packed with features, this chapter introduces a great deal of
material. Therefore I thought it would be worthwhile to summarize the sections according to their
order of appearance so as to provide you with an easy way to later reference the material:

• Introducing Object-relational Mapping: This chapter kicks off with an introduction to object-
relational mapping, an approach to database access upon which the Zend Framework's Zend_Db
is built.

• Introducing Zend_Db: The Zend_Db component is the Zend Framework's primary conduit for
talking to a database. In this step I'll introduce you to this component, which is so powerful that
it almost manages to make database access fun.

• Creating Your First Model: When using Zend_Db, you'll rely upon a series of classes (known
as models) which serve as the conduits for talking to your database. These models expose the
underlying database tables via a series of attributes and methods, meaning you'll be able to query
and manage data without having to write SQL queries! In this step I'll show you how to create a
model for managing video game data.

• Querying Your Models: With the video game model created, we can begin retrieving data from
the database using the query syntax exposed through the Zend_Db component. In this step I'll

Easy PHP Websites with the Zend Framework 85

introduce you to this syntax, showing you how to retrieve data from the database in a variety of
useful ways.

• Creating a Row Model: Row models give you the ability to query and manipulate specific rows
within your database tables. In this step I'll show you how to configure and use this powerful
feature.

• Inserting, Updating, and Deleting Data: Just as you can retrieve data through the Zend_Db
component, so can you use it to insert, update, and delete data. In this step I'll show you how.

• Creating Model Relationships: Zend_Db supports the ability to model table relationships,
allowing you to deftly interact with the database in amazingly convenient ways. In my experience
this is one of the component's most compelling features, and in this step I'll show you how to take
advantage of this feature by defining a model which we will use to manage gaming platforms
(such as Xbox 360 and Nintendo Wii), and tying it to the video game model so we can associate
each game with its platform.

• JOINing Your Data: Most of your time will be spent dealing with simple queries, however you'll
occasionally require a more powerful way to assemble your data. In this step I'll introduce you to
the powerful SQL statement known as the join, which will open up a myriad of new possibilities
to consider when querying the database.

• Creating and Managing Views: As the complexity of your data grows, so will the SQL queries
used to interact with it. Rather than repeatedly refer to these complex queries within your code,
you can bundle them into what's known as a view, which stores the query within the database.
You'll then be be able to call the query associated with the view using a simple alias rather than
repeatedly insert the complex query within your code. In this section I'll show you how to create
and manage views within your Zend Framework-driven websites.

• Paginating Results with Zend_Paginator: When dealing with large amounts of data, you'll
probably want to spread the data across several pages, or paginate it, so the user can easily navigate
the data without having to endure long page loading times. But manually splitting retrieved data
into multiple pages is a more difficult task than you might think; thankfully the Zend_Paginator
component can do the dirty work for you, and in this step I'll show you how to use it.

Before continuing, I'd like to point out that while the Zend Framework's Zend_Db component does a
fine role of encapsulating the application's database functionality, it lacks many of the conveniences
enjoyed by similar implementations found within other frameworks, including notably Ruby on Rails
(http://rubyonrails.org/). This isn't due to oversight, but is rather the result of the Zend Framework
developers' particular philosophy in terms of providing a solution which serves as the starting point

Easy PHP Websites with the Zend Framework 86

for building more sophisticated features. Notably, Zend_Db supports the ability to create table
gateways, table mappers, and associated model classes, however this approach can quickly become
time-consuming, complex, and tedious. Therefore I've made the perhaps controversial although I
believe pragmatic decision to spend this chapter introducing you to only Zend_Db's fundamental
features, and will not guide you down the path of creating your own ORM implementation as
described in the Zend Framework Quickstart. Instead, if you require a more sophisticated solution
than what's available by way of the fundamentals discussed in this chapter, I suggest you consider
Doctrine, a full-blown ORM solution introduced in Chapter 6. Although at the time of this writing
Doctrine was not natively supported by the Zend Framework, there exists a relatively straightforward
way to use Doctrine in conjunction with your Zend Framework applications, and in the next chapter
I'll show you how this is accomplished.

Introducing Object-Relational Mapping
Object-relational mapping (ORM) tools provide the developer with an object-oriented database
interface for interacting with the underlying database. Although the implementation details vary
according to each ORM solution, generally speaking an ORM will map a class to each database
table, with the former serving as the programmatic conduit for manipulating the latter. This class
not only provides a seamless table interface, performing tasks such as selecting, inserting, updating,
and deleting data, but can also be extended to incorporate other features such as data validation.
Best of all, because the chosen ORM is typically written in the same language as that used for the
rest of the application, the developer is no longer inconvenienced by the need to repeatedly digress.
Further, the isolation of database-related actions allows you to effectively maintain the desired tier
separation espoused by web frameworks.

If like me your PHP knowledge outweighs your SQL acumen, the object-oriented database interface
is a welcome feature. Further, you'll no longer have to haphazardly intermingle PHP and SQL syntax,
an approach which is probably the largest contributor to the mess known as "spaghetti code". Instead,
you'll use a series of exposed methods and other features made available through the ORM to cleanly
and concisely integrate the database into your website.

Because ORM is such an attractive solution, a variety of open source and commercial ORM projects
are currently under active development. PHP is no exception, and in the next chapter I'll introduce
you to Doctrine, which is widely considered to be one of the PHP community's most prominent ORM
solutions. The Zend Framework too offers its own native ORM solution, packaged into a component
called Zend_Db. Let's take an introductory look at Zend_Db, examining a typical bit of code used
to retrieve a video game according to its Amazon.com ASIN (Amazon Standard Identification
Number):

$gameTable = new Application_Model_DbTable_Game();

Easy PHP Websites with the Zend Framework 87

$select = $gameTable->select()->where('asin = ?', 'B002BSA20M');
$this->view->game = $gameTable->fetchOne($select);

From within the associated view you can access the record's columns using the familiar object-
oriented syntax:

<h3><?= $this->game->name; ?></h3>
<img src="/images/games/<?= $this->game->image_medium; ?>" style="float: left;" />
<p>
Release date: <?= date("F j, Y", strtotime($this->game->release_date)); ?>
</p>

Using this intuitive object-oriented interface, it's easy to create video game profile pages such as the
one presented in Figure 6.1.

Figure 6.1. Building a game profile page using Zend_Db

Let's move on to consider how an ORM solves a more sophisticated problem. Most ORM solutions,
Zend_Db included, are capable of intuitively handling the often complex relations defined within
a database schema. For instance, suppose you were updating a table named ranks with the daily
sales rankings of the video games stored within your database as determined by Amazon.com's sales
volume. Because the sales_ranks table includes a foreign key which points to a record found within
the games table, we're dealing with a one-to-many relationship, meaning that one game is related to
multiple sales rank entries. You want to provide users with a summary highlighting these historical
rankings, and so want to create a page which identifies the game and provides a tabular summary of

Easy PHP Websites with the Zend Framework 88

the rankings over a given period. Provided you've properly configured the relationship within your
models (a subject we'll discuss in some detail later in the chapter), retrieving these rankings using
Zend_Db is trivial:

$gameTable = new Application_Model_DbTable_Game();

$select = $gameTable->select()->where('asin = ?', 'B002BSA20M');
$this->view->game = $gameTable->fetchOne($select);

$this->view->rankings =
 $this->view->game->findDependentRowset('Application_Model_DbTable_Rank')

With the $rankings view scope variable defined, you can iterate over it within the view using PHP's
foreach statement:

foreach ($this->view->rankings AS $ranking) {
 printf("Date: %s, Rank: %i
", $ranking->created_on, $ranking->$rank);
}

These examples only provide a taste of what Zend_Db's capabilities. Throughout the remainder of
this chapter I'll introduce you to a vast selection of other useful Zend_Db features.

Introducing Zend_Db

The Zend_Db component provides Zend Framework users with a flexible, powerful, and above all,
easy, solution for integrating a database into a website. It's easy because Zend_Db almost completely
eliminates the need to write SQL statements (although you're free to do so if you'd like), instead
providing you with an object-oriented interface for retrieving, inserting, updating, and deleting data
from the database.

Connecting to the Database

Built atop PHP's PDO extension, Zend_Db supports a number of databases including MySQL,
DB2, Microsoft SQL Server, Oracle, PostgreSQL, SQLite, and others. Connecting to the desired
database is typically done by defining the desired database adapter and connection parameters within
the application.ini file (the purpose of this file was introduced in Chapter 5), so let's begin by
using the ZF CLI to configure your application to use a MySQL database. Enter your project's root
directory and execute the following command:

%>zf configure db-adapter \
> "adapter=PDO_MYSQL& \
> host=localhost& \

Easy PHP Websites with the Zend Framework 89

> username=gamenomad_user& \
> password=secret& \
> dbname=gamenomad_dev" development
A db configuration for the development section has been written to the
application config file.

Executing this command will result in the following five parameters being added to the development
section of the application.ini file:

resources.db.adapter = PDO_MYSQL
resources.db.params.host = localhost
resources.db.params.username = gamenomad_user
resources.db.params.password = secret
resources.db.params.dbname = gamenomad_dev

Believe it or not, adding these parameters to your application.ini file is all that's required
to configure your database. Next, create the database which you've associated with the
resources.db.params.dbname parameter if you haven't already done so, and within it create the
following table:

CREATE TABLE games (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 asin VARCHAR(255) NOT NULL,
 name VARCHAR(255) NOT NULL,
 price DECIMAL(5,2) NOT NULL,
 publisher VARCHAR(255) NOT NULL,
 release_date DATE NOT NULL
);

We'll use this table as the basis for several initial examples in order to acquaint you with Zend_Db's
fundamental features.

Creating Your First Model

You'll use Zend_Db to interact with the database data via a series of classes, or models. Each model
is configured to represent the database tables and even the rows associated with a table. I'll show you
how to create and interact with row-level models later in this chapter, so for now let's concentrate
on table-level models, which extend Zend_Db's Zend_Db_Table_Abstract class.

As usual, the best way to learn how all of this works is by using it. So let's begin by creating a class
which will serve as the model for interacting with the games table. You can generate this model
using the ZF CLI, which is always the recommended way to create new application components
when possible:

Easy PHP Websites with the Zend Framework 90

%>zf create db-table Game

At the time of this writing the zf utility was capable of doing little more than creating the class
skeleton and saving the file to the application/models/DbTable directory, although I expect its
capabilities to improve in future versions. Nonetheless, the tool serves as a useful tool for getting
started, so once the model is created open it application/models/DbTable/Game.php) and update
the class so it looks exactly like the following:

01 class Application_Model_DbTable_Game extends Zend_Db_Table_Abstract
02 {
03 protected $_name = 'games';
04 protected $_primary = 'id';
05 }

Although just five lines of code, there are some pretty important things happening in this listing:

• Line 01 defines the name of the model Application_Model_DbTable_Game), and specifies that the
model should extend the Zend_Db_Table_Abstract class. The latter step is important because in
doing so, the Application_Model_DbTable_Game model will inherit all of the traits the Zend_Db
grants to models. As for naming your model, I prefer to use the singular form of the word used for
the corresponding table name (in this case, the model name is Application_Model_DbTable_Game
(although the first two parts of the name are just prefixes, so when discussing your models with
others it's common to just refer to the model name, in this case, as Game), and the table name is
games). It's very important you understand that this model's Application_ prefix identifies it as
being intended for the website's default module, which is the module created when a new Zend
Framework project is created using the ZF CLI. If you wanted to create a model intended for a
blog module, you would name the model something like Blog_Model_Entry. You would place this
model in the blog module's model directory rather than the default model directory. See Chapter
2 for more information about the Zend Framework's modular architecture feature.

• Because of my personal preference for using singular form when naming models, line 03 overrides
the Zend Framework's default behavior of presuming the model name exactly matches the name of
the database table. Neglecting to do this will cause an error, because the framework will presume
your database table name is game, rather than games.

• Line 04 identifies the table's primary key. By default the Zend framework will presume the primary
key is an automatically incrementing integer named id, so this line is actually not necessary in the
case of the games table; I prefer to include the line simply as a matter of clarification for fellow
developers. Of course, if you were using some other value as a primary key, for instance a person's
social security number, you would need to identify that column name instead.

Easy PHP Websites with the Zend Framework 91

Congratulations, you've just created an interface for talking to the database's games table. What next?
Let's start by retrieving some data.

Querying Your Models
It's likely the vast majority of your time spent with the database will involve retrieving data. Using the
Zend_Db component selecting data can be done in a variety of ways. In this section I'll demonstrate
several of the options at your disposal.

Querying by Primary Key

The most commonplace method for retrieving a table row is to query by the row's primary key. The
following example queries the database for the row associated with the primary key 1:

$gameTable = new Application_Model_DbTable_Game();
$game = $gameTable->find(1);
echo "{$game[0]->name} (ASIN: {$game[0]->asin})";

Returning:

Call of Duty 4: Modern Warfare (ASIN: B0016B28Y8)

But why do we even have to deal with index offsets in the first place? After all, using the primary
key implies there should only be one result anyway, right? This is because the find() method also
supports the ability to simultaneously query for multiple primary keys, like this:

$game = $gameTable->find(array(1,4));

Presuming both of the primary keys exist in the database, the row associated with the primary key
1 will be found in offset 0, and the row associated with the primary key 4 will be found in offset 1.

Because in most cases you'll probably use the find() method to retrieve just a single value, you'll
likely want to eliminate the need to refer to an index offset by using the current() method:

$gameTable = new Application_Model_DbTable_Game();
$game = $gameTable->find(1)->current();
echo "{$game->name} (ASIN: {$game->asin})";

Querying by a Non-key Column

You'll inevitably want to query for rows using criteria other than the primary key. For instance,
various features of the GameNomad site retrieve games according to their ASIN. If you only need
to search by ASIN at a single location within your site, you can hardcode the query, like so:

Easy PHP Websites with the Zend Framework 92

$gameTable = new Application_Model_DbTable_Game();
$query = $gameTable->select();
$query->where("asin = ?", "B0016B28Y8");
$game = $gameTable->fetchRow($query);
echo "{$game->name} (ASIN: {$game->asin})";

Note that unlike when searching by primary key, there's no need to specify an index offset when
referencing the result. This is because the fetchRow() method will always return only one row.

Because it's likely you'll want to search by ASIN at several locations within the website, the more
efficient approach is to define a Game class method for doing so:

function findByAsin($asin) {
 $query = $this->select();
 $query->where('asin = ?', $asin);
 $result = $this->fetchRow($query);
 return $result;
}

Notice the use of the $this object when executing the select() method. This is because we're inside
the Application_Model_DbTable_Game class, so $this can be used to refer to the calling object,
saving you a bit of additional coding.

Now searching by ASIN couldn't be easier:

$gameTable = new Application_Model_DbTable_Game();
$game = $gameTable->findByAsin('B0016B28Y8');

Retrieving Multiple Rows

To retrieve multiple rows based on some criteria, you can use the fetchAll() method. For instance,
suppose you wanted to retrieve all games with a price higher than $44.99:

$game = new Application_Model_DbTable_Game();
$query = $game->select();
$query->where('price > ?', 44.99);
$results = $this->fetchAll($query);

The fetchAll() method returns an array of objects, meaning to loop through these results you can
just use PHP's native foreach construct:

foreach($results AS $result) {
 echo "{$result->name} ({$result->asin})
";

Easy PHP Websites with the Zend Framework 93

}

Custom Search Methods in Action

Your searches don't have to be restricted to retrieving records based on a specific criteria. For
instance, the following class method retrieves all games in which the title includes a particular
keyword:

function getGamesMatching($keywords)
{
 $query = $this->select();
 $query->where('name LIKE ?', "%$keywords%");
 $query->order('name');
 $results = $this->fetchAll($query);
 return $results;
}

You can then use this method within a controller action like this:

// Retrieve the keywords
$this->view->keywords = $this->_request->getParam('keywords');

$game = new Application_Model_DbTable_Game();
$this->view->games = $game->getGamesMatching($this->view->keywords);

Counting Rows

All of the examples demonstrated so far have presumed one or more rows will actually be returned.
But what if the primary key or other criteria aren't found in the database? Zend_Db allows you to
use standard PHP syntactical constructs to not only loop through results, but count them. Therefore,
the easiest way to count your results is using PHP's count() function. I typically use count() within
the view to determine whether entries have been returned from a database query:

<?php if (count($this->games) > 0) { ?>

 <h3>New Games</h3>

 <?php foreach($this->games AS $game) { ?>
 <p><?= $game->name; ?></p>
 <?php } ?>

<?php } else { ?>

 <p>
 No new games have been added over the past 24 hours.

Easy PHP Websites with the Zend Framework 94

 </p>

<?php } ?>

Selecting Specific Columns

So far we've been retrieving all of the columns in a given row, but what if you only wanted to
retrieve each game's name and ASIN? Using the from() method, you can identify specific columns
for selection:

$gameTable = new Application_Model_DbTable_Game();
$query = $gameTable->select();
$query->from('games', array('asin', 'title'));
$query->where('asin = ?', 'B0016B28Y8');
$game = $gameTable->fetchRow($query);
echo "{$game->name} (\${$game->price})";

Ordering the Results by a Specific Column

To order the results according to a specific column, use the ORDER clause:

$game = new Application_Model_DbTable_Game();
$query = $game->select();
$query->order('name ASC');
$rows = $game->fetchAll($query);

To order by multiple columns, pass them to the ORDER clause in the order of preferred precedence,
with each separated by a comma. The following example would have the effect of ordering the
games starting with the earliest release dates. Should two games share the same release date, their
precedence will be determined by the price.

$query->order('release_date ASC, price ASC');

Limiting the Results

To limit the number of returned results, you can use the LIMIT clause:

$game = new Application_Model_DbTable_Game();
$query = $game->select();
$query->where('name LIKE ?', $keyword);
$query->limit(15);
$rows = $game->fetchAll($query);

You can also specify an offset by passing a second parameter to the clause:

Easy PHP Websites with the Zend Framework 95

$query->limit(15, 5);

Executing Custom Queries

Although Zend_Db's built-in query construction capabilities should suffice for most situations, you
might occasionally want to manually write and execute a query. To do so, you can just create the
query and pass it to the fetchAll() method, however before doing so you'll want to filter it through
the quoteInto() method, which will filter the data by delimiting the string with quotes and escaping
special characters.

In order to take advantage of this feature you'll need to add the following line to your
application.ini file. I suggest adding it directly below the five lines which were generated when
you executed the ZF CLI's configure db-adapter command:

resources.db.isDefaultTableAdapter = true

This line will signal to the Zend Framework that the database credentials found within the
configuration file should be considered the application's default. You'll then obtain a database
connection handler using the getResource() method, as demonstrated in the first line of the
following example:

$db = $this->getInvokeArg('bootstrap')->getResource('db');
$name = "Cabela's Dangerous Hunts '09";
$sql = $db->quoteInto("SELECT asin, name FROM games where name = ?", $name);
$results = $db->fetchAll($sql);
echo count($results);

You can think of the quoteInto() method as a catch-all for query parameters, both escaping special
characters and delimiting it with the necessary quotes.

Querying Your Database Without Models

Before moving on to other topics, I wanted to conclude this section with an introduction to an
alternative database query approach which might be of interest if you're building a fairly simple
website. As of the Zend Framework 1.9 release, you can query your tables without explicitly
creating a model. Instead, you can just pass the database table name to the concrete Zend_Db_Table
constructor, like this:

$gameTable = new Zend_Db_Table('games');

You'll then be able to take advantage of all of the query-related features introduced throughout this
section. This approach can contribute towards trimming your project's code base, so be sure to use it

Easy PHP Websites with the Zend Framework 96

for those models you won't need to extend via custom methods. Because it's typical to extend most
models with at least one custom feature, I'll continue using the more advanced approach throughout
the book.

Creating a Row Model

It's important that you understand the Game model created in the previous section represents the games
table, and not each specific record (or row) found in that table. For example, you might use this
Game model to retrieve a particular row, determine how many rows are found in the table, or figure
out what row contains the highest priced game. However, when performing operations specific to
a certain row, such as finding the most recent sales rank of a row you've retrieved using the Game
model, you'll want to associate a row-specific model with the corresponding table-specific model.
To do so, add this line to the Application_Model_DbTable_Game model defined within Game.php:

protected $_rowClass = 'Application_Model_DbTable_GameRow';

Next, create the Application_Model_DbTable_GameRow model using the ZF CLI:

%>zf create db-table GameRow

A class file named GameRow.php will be created and placed within the application/models/
DbTable directory. Just as when you created the Game table model, you'll need to do a bit of additional
work before the GameRow model is functional. Open the GameRow model and replace the existing code
with the following contents (note in particular that this class extends Zend_Db_Table_Row_Abstract
as compared to a table-level model which extends Zend_Db_Table_Abstract):

class Application_Model_DbTable_GameRow extends Zend_Db_Table_Row_Abstract
{
 function latestSalesRank()
 {
 $rank = new Application_Model_DbTable_Rank();
 $query = $rank->select('rank');
 $query->where('game_id = ?', $this->id);
 $query->order('created_at DESC');
 $query->limit(1);
 $row = $rank->fetchRow($query);
 return $row->rank;
 }
}

This row-level model contains a single method named latestSalesRank() which will retrieve the
latest recorded sales rank associated with a specific game by querying another table represented by

Easy PHP Websites with the Zend Framework 97

the Rank model. To demonstrate this feature, suppose you wanted to output the sales ranks of all
video games released to the market before January 1, 2011. First we'll use the Game model to retrieve
the games stored in the database. Second we'll iterate through the array of games (which are objects
of type Application_Model_DbTable_GameRow), calling the latestSalesRank() method to output
the latest sales rank:

$gameTable = new Application_Model_DbTable_Game();
$query = $gameTable->select()->where("release_date < ?", "2011-01-01");
$results = $gameTable->fetchAll($query);

foreach($results AS $result)
{
 echo "{$result->name} (Sales Rank: {$result->latestSalesRank()})
";
}

Executing this snippet produces output similar to the following:

Call of Duty 4: Modern Warfare (Sales Rank: 14)
Call of Duty 2 (Sales Rank: 2,208)
NBA 2K8 (Sales Rank: 475)
NHL 08 (Sales Rank: 790)
Tiger Woods PGA Tour 08 (Sales Rank: 51)

Inserting, Updating, and Deleting Data

You're not limited to using Zend_Db to simply retrieve data from the database; you can also insert
new rows, update existing rows, and delete them.

Inserting a New Row

To insert a new row, you can use the insert() method, passing an array of values you'd like to insert:

$gameTable = new Application_Model_DbTable_Game();

$data = array(
 'asin' => 'B0028IBTL6',
 'name' => 'Fallout: New Vegas',
 'price' => '59.99',
 'publisher' => 'Bethesda',
 'release_date' => '2010-10-19'
);

$gameTable->insert($data);

Easy PHP Websites with the Zend Framework 98

Updating a Row

To update a row, you can use the update() method, passing along an array of values you'd like to
change, and identifying the row using the row's primary key or another unique identifier:

$gameTable = new Application_Model_DbTable_Game();

$data = array(
 'price' => 49.99
);

$where = $game->getAdapter()->quoteInto('id = ?', '42');

$gameTable->update($data, $where);

Alternatively, you can simply change the attribute of a row loaded into an object of type
Zend_Db_Table_Abstract, and subsequently use the save() method to save the change back to the
database:

$gameTable = new Application_Model_DbTable_Game();

// Find NBA 2K11
$game = $gameTable->findByAsin('B003IME9UO');

// Change the price to $39.99
$game->price = 39.99;

// Save the change to the database
$game->save();

Deleting a Row

To delete a row, you can use the delete() method:

$gameTable = new Application_Model_DbTable_Game();

$where = $gameTable->getAdapter()->quoteInto('asin = ?', 'B003IME9UO');

$gameTable->delete($where);

Creating Model Relationships

Because even most rudimentary database-driven websites rely upon multiple related tables, it's fair
to say you'll spend a good deal of time writing code which manages and navigates these relations.

Easy PHP Websites with the Zend Framework 99

Recognizing this, the Zend developers integrated several powerful features capable of dealing
with related data. Notably, these features allow you to transparently treat a related row as another
object attribute. Of course, these relations are only available when a normalized database is used,
meaning you'll need to properly structure your database schema using primary and foreign keys.
To demonstrate how Zend_Db can manage relations, start by altering the games table to include a
foreign key which will reference a row within a table containing information about available gaming
platforms:

mysql>ALTER TABLE games ADD COLUMN platform_id TINYINT UNSIGNED
 ->NOT NULL AFTER id;

Next create the platforms table:

CREATE TABLE platforms (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 abbreviation VARCHAR(10) NOT NULL
);

Finally, create the Platform model, which we'll use to access the newly created platforms table:

%>zf create db-table Platform

Once created, update the class found in Platform.php in the same manner we did with the Game
model at the beginning of this chapter.

With the schema updated and necessary models in place you'll next need to configure the
relationships within your models. The games table is dependent upon the platforms table, so let's
start by defining the Game model's subservient role within the Platform model. Update the Platform
model to include the protected attribute presented on Line 07 of the following listing:

01 class Application_Model_DbTable_Platform extends Zend_Db_Table_Abstract
02 {
03
04 protected $_name = 'platforms';
05 protected $_primary = 'id';
06
07 protected $_dependentTables = array('Application_Model_DbTable_Game');
08 }

Line 07 defines the relationship, informing Zend_Db of the existence of a column within the Game
model which stores a foreign key pointing to a row managed by the Platform model. If a model
happens to be a parent for more than one other model, for instance the Game model is a parent to

Easy PHP Websites with the Zend Framework 100

the Rank and the AccountGame models, you would revise the $_dependentTables attribute to look
like this:

protected $_dependentTables = array('Application_Model_DbTable_Rank', 'Application_Model_DbTable_GameUser');

Returning to defining the relationship between the Game and Platform models, you'll also need to
reciprocate the relationship within the Game model, albeit with somewhat different syntax because
this time we're referring to the parent Platform model:

01 protected $_referenceMap = array (
02 'Platform' => array (
03 'columns' => array('platform_id'),
04 'refTableClass' => 'Application_Model_DbTable_Platform'
05)
06);

In this snippet we're identifying the foreign keys found in the Game model's associated schema,
identifying both the column storing the foreign key (platform_id), and the model that foreign key
represents (Platform). Of course, it's entirely likely for a model to store multiple foreign keys. For
instance, a model named Account might refer to three other models (State, Country, and Platform,
the latter of which is used to identify the account owner's preferred platform):

protected $_referenceMap = array (
 'State' => array (
 'columns' => array('state_id'),
 'refTableClass' => 'Application_Model_DbTable_State'
),
 'Country' => array (
 'columns' => array('country_id'),
 'refTableClass' => 'Application_Model_DbTable_Country'
),
 'Platform' => array (
 'columns' => array('platform_id'),
 'refTableClass' => 'Application_Model_DbTable_Platform'
)
);

With the models' relationship configured, quite a few new possibilities suddenly become available.
For instance, you can retrieve a game's platform name using this simple call:

$game->findParentRow('Application_Model_DbTable_Platform')->name;

Likewise, you can retrieve dependent rows using the findDependentRowset() method. For instance,
the following snippet will retrieve the count of games associated with the Xbox 360 platform
(identified by a primary key of 1):

Easy PHP Websites with the Zend Framework 101

$platformTable = new Application_Model_DbTable_Platform();

// Retrieve the platform row associated with the Xbox 360
$xbox360 = $platformTable->find(1)->current();

// Retrieve all games associated with platform ID 1
$games = $xbox360->findDependentRowset('Application_Model_DbTable_Game');

// Display the number of games associated with the Xbox 360 platform
echo count($games);

Alternatively, you can use a "magic method", made available to related models. For instance,
dependent games can also be retrieved using the findGame() method:

$platformTable = new Application_Model_DbTable_Platform();

// Retrieve the platform row associated with the Xbox 360
$xbox360 = $platformTable->find(1)->current();

// Retrieve all games associated with platform ID 1
$games = $xbox360->findGame();

// Display the count
echo count($games);

The method is named findGame() because we're finding the platform's associated rows in the Game
model. If the model happened to be named Games, we would use the method findGames().

Finally, there's still another magic method at your disposal, in this case, findGameByPlatform():

$platformTable = new Application_Model_DbTable_Platform();

// Retrieve the platform row associated with the Xbox 360
$xbox360 = $platformTable->find(1);

// Retrieve all games associated with platform ID 1
$games = $xbox360->findGameByPlatform();

// Display the count
echo count($games);

Note
The Zend_Db component can also automatically perform cascading operations if your
database does not support referential integrity. This means you can configure your website
model to automatically remove all games associated with the PlayStation 2 platform should

Easy PHP Websites with the Zend Framework 102

you decide to quit supporting this platform and delete it from the platforms table. See the
Zend Framework documentation for more information about this feature.

Sorting a Dependent Rowset

When retrieving a a dependent result set (such as games associated with a particular platform), you'll
often want to sort these results according to some criteria. To do so, you'll need to pass a query object
into the findDependentRowset() method as demonstrated here:

$platformTable = new Application_Model_DbTable_Platform();
$gameTable = new Application_Model_DbTable_Game();
$games = $platformTable->findDependentRowset(
 'Application_Model_DbTable_Game', null,
 $gameTable->select()->order('name')
);

JOINing Your Data

ORM solutions because they effectively abstract much of the gory SQL syntax that I've grown to
despise over the years. But being able to avoid the syntax doesn't mean you should be altogether
ignorant of it. In fact, ultimately you're going to need to understand some of SQL's finer points in
order to maximize its capabilities. This is no more evident than when you need to retrieve related
data residing within multiple tables, a technique known as joining tables.

Join Scenarios

If you're not familiar with the concept of a join, this section will serve to acquaint you with the
topic by working through several common scenarios which appear within any data-driven website
of moderate complexity.

Finding a User's Friends

The typical social networking website offers a means for examining a user's list of friends. There
are many ways to manage a user's social connections, however one of the easiest involves simply
using a table to associate each user's primary key with the friend's primary key. This table might
look like this:

CREATE TABLE friends (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 account_id INTEGER UNSIGNED NOT NULL,
 friend_id INTEGER UNSIGNED NOT NULL,
 created_on TIMESTAMP NOT NULL

Easy PHP Websites with the Zend Framework 103

);

Let's begin by examining the most basic type of join, known as the inner join. An inner join will return
the desired rows whenever there is at least one match in both tables, the match being determined by
a shared value such as an account's primary key. So for example, you might use a join to retrieve
a list of a particular account's friends

mysql>SELECT a.username FROM accounts a
 ->INNER JOIN friends f ON f.friend_id = a.id WHERE f.account_id = 44;

This join requests the username of each account owner found in the friends table who is mapped
to a friend of the account owner identified by 44.

Determine the Number of Copies of a Game Found in Your Network

Suppose you would like to borrow a particular game, but know your friend John had already loaned
his copy to Carli. Chances are however somebody else in your network owns the game, but how can
you know? Using a simple join, it's possible to determine the number of copies owned by friends, a
feature integrated into GameNomad and shown in Figure 6.2.

Figure 6.2. Determining whether an account's friend owns a game

You might notice in Figure 6.2 this feature is actually used twice; once to determine the number
of copies found in your network, and a second time to determine the number of copies found in
your network which are identified as being available to borrow. To perform the former task, use
this SQL join:

mysql>SELECT COUNT(gu.id) FROM games_to_accounts gu
 ->INNER JOIN friends f ON f.friend_id = gu.account_id
 ->WHERE f.account_id = 1 AND gu.game_id = 3;

As an exercise, try modifying this query to determine how many copies are available to borrow.

Determining Which Games Have Not Been Assigned a Platform

In an effort to increase the size of your site's gaming catalog, you've acquired another website which
was dedicated to video game reviews. While the integration of this catalog has significantly bolstered
the size of your database, the previous owner's lackadaisical data management practices left much
to be desired, resulting in both incorrect and even missing platform assignments. To review a list

Easy PHP Websites with the Zend Framework 104

of all video games and their corresponding platform (even if the platform is NULL), you can use a
join variant known as a left join.

While the inner join will only return rows from both tables when a match is found within each, a left
join will return all rows in the leftmost table found in the query even if no matching record is found
in the "right" table. Because we want to review a list of all video games and their corresponding
platforms, even in cases where a platform hasn't been assigned, the left join serves as an ideal vehicle:

mysql>SELECT games.title, platforms.name FROM games
 ->LEFT JOIN platforms ON games.platform_id = platforms.id
 ->ORDER BY games.title LIMIT 10;

Executing this query produces results similar to the following:

+-------------------------------------+---------------+
| title | name |
+-------------------------------------+---------------+
Ace Combat 4: Shattered Skies	Playstation 2
Ace Combat 5	Playstation 2
Active Life Outdoor Challenge	Nintendo Wii
Advance Wars: Days of Ruin	Nintendo DS
American Girl Kit Mystery Challenge	Nintendo DS
Amplitude	Playstation 2
Animal Crossing: Wild World	Nintendo DS
Animal Genius	Nintendo DS
Ant Bully	NULL
Atelier Iris Eternal Mana	Playstation 2
+-------------------------------------+---------------+

Note how the game "Ant Bully" has not been assigned a platform. Using an inner join, this row
would not have appeared in the listing.

Counting Users by State

As your site grows in terms of registered users, chances are you'll want to create a few tools for
analyzing statistical matters such as the geographical distribution of users according to state. To
create a list tallying the number of registered users according to state, you can use a right join,
which will list every record found in the right-side table, even if no users are found in that state. The
following example demonstrates the join syntax used to perform this calculation:

mysql>SELECT COUNT(accounts.id), states.name
 ->FROM accounts RIGHT JOIN states ON accounts.state_id = states.id
 ->GROUP BY states.name;

Executing this query produces output similar to the following:

Easy PHP Websites with the Zend Framework 105

...
145	New York
18	North Carolina
0	North Dakota
43	Ohio
22	Oklahoma
15	Oregon
77	Pennsylvania
...

As even these relatively simple examples indicate, join syntax can be pretty confusing. The best
advice I can give you is to spend an afternoon leisurely experimenting with the data, creating and
executing joins which allow you to view the data in new and interesting ways.

Creating and Executing Zend_Db Joins

Now that you have a better understanding of how joins work, let's move on to how the Zend_Db
makes it possible to integrate joins into your website. To demonstrate this feature, consider the
following join query, which retrieves a list of a particular account's (identified by the primary key
3) friends:

mysql>SELECT a.id, a.username FROM accounts a
 ->JOIN friends ON friends.friend_id = a.id
 ->WHERE friends.account_id = 3;

Using Zend_Db's join syntax, you might rewrite this join and place it within a method named
getFriends() found in the Application_Model_DbTable_AccountRow model:

01 function getFriends()
02 {
03 $accountTable = new Application_Model_DbTable_Account();
04 $query = $accountTable->select()->setIntegrityCheck(false);
05 $query->from(array('a' => 'accounts'), array('a.id', 'a.username'));
06 $query->join(array('f' => 'friends'), 'f.friend_id = a.id', array());
07 $query->where('f.account_id = ?', $this->id);
08
09 $results = $accountTable->fetchAll($query);
10 return $results;
11 }

Let's break this down:

• The setIntegrityCheck() method used in Line 04 defines the result set as read only, meaning
any attempts to modify or delete the result set will cause an exception to be thrown. Although

Easy PHP Websites with the Zend Framework 106

most developers find this Zend Framework-imposed requirement confusing, it does come with
the benefit of reminding you that any result set derived from a join is read-only.

• Line 05 identifies the left side of the join, in this case the accounts table. You'll also want to
pass along an array containing the columns which are to be selected, otherwise all column will
by default be selected.

• Line 06 identifies the joined table, and join condition. If you'd like to select specific columns from
the joined table, pass those columns along in an array as was done in line 05; otherwise pass in
an empty array to select no columns.

• Line 07 defines a WHERE clause, which will restrict the result set to a specific set of rows. In this
case, we only want rows in which the friends table's account_id column is set to the value
identified by $this->id.

You'll come to find the Zend_Db's join capabilities are particularly useful as your site grows in
complexity. When coupled with Zend_Db's relationship features, it's possible to create impressively
powerful data mining features with very little code.

Creating and Managing Views

You've seen how separating the three tiers (Model, View, and Controller) can make your life much
easier. This particular chapter has so far focused on the Model as it relates to Zend_Db, along the
way showing you how to create some fairly sophisticated SQL queries. However there's still further
you can go in terms of separating the database from the application code.

Most relational databases offer a feature known as a named view, which you can think of as a simple
way to refer to a complex query. This query might involve retrieving data from numerous tables, and
may evolve over time, sometimes by the hand of an experienced database administrator. By moving
the query into the database and providing the developer with a simple alias for referring to the query,
the administrator can manage that query without having to necessarily also change any code found
within the application. Even if you're a solo developer charged with both managing the code and the
database, views are nonetheless a great way to separate these sorts of concerns.

Creating a View

Producing a list of the most popular games found in GameNomad according to their current sales
rankings is a pretty commonplace task. Believe it or not, the query used to retrieve this data is fairly
involved:

Easy PHP Websites with the Zend Framework 107

mysql>SELECT MAX(ranks.id) AS id, games.name AS name, games.asin AS asin,
 ->games.platform_id AS platform_id,
 ->ranks.rank AS rank
 ->FROM games
 ->JOIN ranks
 ->ON games.id = ranks.game_id
 ->GROUP BY ranks.game_id
 ->ORDER BY ranks.rank LIMIT 100;

Although by no means the most complex of queries, it's nonetheless a mouthful. Wouldn't it be much
more straightforward if we can simply call this query using the following alias:

mysql>SELECT view_latest_sales_ranks;

Using MySQL's view feature, you can do exactly this! To create the view, login to MySQL using
the mysql client or phpMyAdmin and execute the following command:

mysql>CREATE VIEW view_latest_sales_ranks AS
 ->SELECT MAX(ranks.id) AS id, games.name AS name, games.asin AS asin,
 ->games.platform_id AS platform_id,
 ->ranks.rank AS rank
 ->FROM games JOIN ranks
 ->ON games.id = ranks.game_id
 ->GROUP BY ranks.game_id
 ->ORDER BY ranks.rank LIMIT 100;

Tip

View creation statements are not automatically updated to reflect any structural or naming
changes you make to the view's underlying tables and columns. Therefore if you make any
changes to the tables or columns used by the view which reflect the view's SQL syntax,
you'll need to modify the view accordingly. Modifying a view is demonstrated in the section
"Reviewing View Creation Syntax".

Adding the View to the Zend Framework

The Zend Framework recognizes views as it would any other database table, meaning you can build
a model around it!

<?php

 class Application_Model_DbTable_ViewLatestSalesRanks extends Zend_Db_Table_Abstract
 {

Easy PHP Websites with the Zend Framework 108

 protected $_name = 'latest_sales_ranks';
 protected $_primary = 'id';

 protected $_referenceMap = array (
 'Platform' => array (
 'columns' => array('platform_id'),
 'refTableClass' => 'Application_Model_DbTable_Platform'
)
);

 }

?>

Deleting a View

Should you no longer require a view, consider removing it from the database for organizational
reasons. To do so, use the DROP VIEW statement:

mysql>DROP VIEW latest_sales_ranks;

Reviewing View Creation Syntax

You'll often want to make modifications to a view over its lifetime. For instance, when I first created
the view_latest_sales_ranks view, I neglected to limit the results to the top 100 games, resulting
in a list of the top 369 games being generated. But recalling the view's lengthy SQL statement isn't
easy, so how can you easily retrieve the current syntax for modification? The SHOW CREATE VIEW
statement solves this dilemma nicely:

mysql>SHOW CREATE VIEW latest_sales_ranks\G
View: latest_sales_ranks
Create View: CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost`
SQL SECURITY DEFINER VIEW `latest_sales_ranks` AS
select max(`ranks`.`id`) AS `id`,`games`.`title` AS `title`,
`games`.`asin` AS `asin`,`games`.`platform_id` AS `platform_id`,
`ranks`.`rank` AS `rank` from (`games` join `ranks`
on((`games`.`id` = `ranks`.`game_id`)))
group by `ranks`.`game_id` order by `ranks`.`rank`
character_set_client: latin1
collation_connection: latin1_swedish_ci

We're particularly interested in the three lines beginning with `latest_sales_ranks`, as this
signifies the start of the query. It looks different from the original SQL statement because MySQL

Easy PHP Websites with the Zend Framework 109

takes care to delimit all table and column names using backticks to account for special characters or
reserved words. You can however reuse this syntax when modifying the query so copy those lines
to your clipboard. Next, remove the query using DROP VIEW:

mysql>DROP VIEW latest_sales_ranks;

Now recreate the view using CREATE VIEW, pasting in the syntax but modifying the syntax by adding
LIMIT 100 to the end of the query:

mysql>CREATE VIEW latest_sales_ranks `latest_sales_ranks`
AS select max(`ranks`.`id`) AS `id`,`games`.`title` AS `title`,
`games`.`asin` AS `asin`,`games`.`platform_id` AS `platform_id`,
`ranks`.`rank` AS `rank` from (`games` join `ranks`
on((`games`.`id` = `ranks`.`game_id`))) group by `ranks`.`game_id`
order by `ranks`.`rank` ASC LIMIT 100;

Paginating Results with Zend_Paginator

For reasons of performance and organization, you're going to want to spread returned database
results across several pages if a lengthy number are returned. However, doing so manually can be a
tedious chore, requiring you to track the number of results per page, the page number, and the query
results current offset. Recognizing this importance of such a feature, the Zend Framework developers
created the Zend_Paginator component, giving developers an easy way to paginate result sets without
having to deal with all of the gory details otherwise involved in a custom implementation.

The Zend_Paginator component is quite adept, capable of paginating not only arrays, but also
database results. It will also autonomously manage the number of results returned per page and the
number of pages comprising the result set. In fact, Zend_Paginator will even create a formatted page
navigator which you can insert at an appropriate location within the results page.

In this section I'll show you how to paginate a large set of video games across multiple pages.

Create the Pagination Query

Next you'll want to add the pagination feature to your website. I find the Zend_Paginator
component appealing because it can be easily integrated into an existing query (which was
presumably previously returning all results). All you need to do is instantiate a new instance of the
Zend_Paginator class, passing the query to the object, and Zend_Paginator will do the rest. The
following script demonstrates this feature:

01 function getGamesByPlatform($id, $page=1, $order="title")
02 {

Easy PHP Websites with the Zend Framework 110

03 $query = $this->select();
04 $query->where('platform_id = ?', $id);
05 $query->order($order);
06
07 $paginator = new Zend_Paginator(new Zend_Paginator_Adapter_DbTableSelect($query));
08 $paginator->setItemCountPerPage($paginationCount);
09 $paginator->setCurrentPageNumber($page);
10 return $paginator;
11 }

Let's break down this method:

• Lines 03-05 create the query whose results will be paginated. Because the method's purpose is to
retrieve a set of video games identified according to a specific platform (Xbox 360 or Playstation
3 for instance), the query accepts a platform ID ($id) as a parameter. Further, should the developer
wish to order the results according to a specific column, he can pass the column name along using
the $order parameter.

• Line 07 creates the paginator object. When creating this object, you're going to pass
along one of several available adapters. For instance, the Zend_Paginator_Adapter_Array()
tells the Paginator we'll be paginating an array. In this example, we use
Zend_Paginator_Adapter_DbTableSelect(), because we're paginating results which
have been returned as instances of Zend_Db_Table_Rowset_Abstract. When using
Zend_Paginator_Adapter_DbTableSelect(), you'll pass in the query.

• Line 08 determines the number of results which should be returned per page.

• Line 09 sets the current page number. This will of course adjust according to the page currently
being viewed by the user. In a moment I'll show you how to detect the current page number.

• Line 10 returns the paginated result set, adjusted according to the number of results per page, and
the offset according to our current page.

Using the Pagination Query

When using Zend_Paginator, each page of returned results will be displayed using the same
controller and view. Zend_Paginator knows which page to return thanks to a page parameter which
is passed along via the URL. For instance, the URL representing the first page of results would look
like this:

http://gamenomad.com/games/platform/id/xbox360

Easy PHP Websites with the Zend Framework 111

The URL representing the fourth page of results would typically look like this:

http://gamenomad.com/games/platform/id/xbox360/page/4

Although I'll formally introduce this matter of retrieving URL parameters in the next chapter, there's
nothing wrong with letting the cat out of the bag now, so to speak. The Zend Framework looks at
URLs using the following pattern:

http://www.example.com/:controller/:action/:key/:value/:key/:value/.../:key/value

This means following the controller and action you can attach parameter keys and corresponding
values, subsequently retrieving these values according to their key names within the action. So for
instance, in the previous URL the keys are id and page, and their corresponding values are xbox360
and 4, respectively. You can retrieve these values within your controller action using the following
commands:

$platform = $this->_request->getParam('id');
$page = $this->_request->getParam('page');

What's more, using a feature known as custom routes, you can tell the framework to recognize URL
parameters merely according to their location, thereby negating the need to even preface each value
with a key name. For instance, if you head over to GameNomad you'll see the platform-specific
game listings actually use URLs like this:

http://gamenomad.com/games/platform/xbox360/4

Although not required knowledge to make the most of the Zend Framework, creating custom routes
is extremely easy to do, and once you figure them out you'll wonder how you ever got along without
them. Head over to http://framework.zend.com/manual/en/zend.controller.router.html to learn more
about them.

With the platform and page number identified, all that's left to do is call the Game model's
getGamesByPlatform() method to paginate the results:

$game = new Default_Game_Model();
$this->view->platformGames = $game->getGamesByPlatform($platform, $page);

Within the view, you can iterate over the $this->platformGames just as you would anywhere else:

<?php if (count($this->platformGames) > 0) { ?>
 <?php foreach ($this->platformGames AS $game) { ?>
 echo "{$game->name}
";
 <?php } ?>
<?php } ?>

Easy PHP Websites with the Zend Framework 112

Adding the Pagination Links

The user will need an easy and intuitive way to navigate from one page of results to the next. This list
of linked page numbers is typically placed at the bottom of each page of output. The Zend_Paginator
component can take care of the list generation for you, all you need to do is pass in the returned
result set (in this case, $this->platformGames), the type of pagination control you'd like to use (in
this case, Sliding), and the view helper used to stylize the page numbers:

<?= $this->paginationControl($this->platformGames,
 'Sliding', 'my_pagination.phtml'); ?>

The Sliding control will keep the current page number in the middle of page range. Several other
control types exist, including All, Elastic, and Jumping. Try experimenting with each to determine
which one you prefer. The view helper works like any other, although several special properties
are made available to it, including the total number of pages contained within the results ($this-
>pageCount), the next page number ($this->next), the previous page ($this->previous), and
several others. Personally I prefer to use one which is almost identical to that found in the Zend
Framework documentation, which I'll reproduce here:

<?php if ($this->pageCount): ?>
<div class="paginationControl">

<!-- Previous page link -->
<?php if (isset($this->previous)): ?>
 <a href="<?= $this->url(array('page' => $this->previous)); ?>">< Prev |
<?php else: ?>
 < Previous |
<?php endif; ?>

<!-- Numbered page links -->
<?php foreach ($this->pagesInRange as $page): ?>
 <?php if ($page != $this->current): ?>
 <a href="<?= $this->url(array('page' => $page)); ?>"><?= $page; ?> |
 <?php else: ?>
 <?= $page; ?> |
 <?php endif; ?>
<?php endforeach; ?>

<!-- Next page link -->
<?php if (isset($this->next)): ?>
 <a href="<?= $this->url(array('page' => $this->next)); ?>">Next >
<?php else: ?>
 Next >
<?php endif; ?>

Easy PHP Websites with the Zend Framework 113

</div>
<?php endif; ?>

Of course, to take full advantage of the stylization opportunities presented by a pagination control
such as this, you'll need to define CSS elements for the paginationControl and disabled classes.

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Define object-relational mapping (ORM) and talk about why its an advantageous approach to
programmatically interacting with a database.

• Given a model named Application_Model_DbTable_Game, what will Zend_Db assume to be the
name of the associated database table? How can you override this default assumption?

• What are the names and purposes of the native Zend_Db methods used to navigate model
associations?

Chapter 7. Chapter 7. Integrating
Doctrine 2
The Zend_Db component (introduced in Chapter 6) does a pretty good job of abstracting away many
of the tedious SQL operations which tend to clutter up a typical PHP-driven website. Implementing
two powerful data access patterns, namely Table Data Gateway and Row Data Gateway, Zend_Db
users have the luxury of interacting with the database using a convenient object-oriented interface.

And if that summed up the challenges when integrating a database into an application, we'd be sitting
pretty. But the Zend_Db component isn't so much a definitive solution as it is a starting point, and the
Zend Framework documentation is quite clear on this matter, even going so far as to provide a tutorial
which explains how to create Data Mappers which transfer data between the domain objects and
relational database. While there's no doubt Zend_Db provides a solid starting foundation, I wonder
how many users have the patience to implement a complete data management solution capable of
meeting their application's complex domain requirements. I sure don't.

Always preferring the path of least resistance, I've been closely monitoring efforts to integrate
Doctrine (http://www.doctrine-project.org/) into the Zend Framework. Although integrating
Doctrine 1.X was a fairly painful process, it has become much less so with the Doctrine 2 release.
Apparently the Zend Framework developers agree that Doctrine is a preferred data persistence
solution, as Zend Framework 2 is slated to include support for Doctrine 2. In the meantime, no
official documentation exists for Doctrine 2 integration, therefore rather than guide you through a
lengthy and time-consuming configuration process which is certain to change I've instead opted to
introduce you to Doctrine 2 using a Doctrine 2-enabled Zend Framework project which is included
in the book's code download. This project is found in the directory z2d2. You'll need to update the
application.ini file to define your database connection parameters and a few related paths but
otherwise you should be able to begin experimenting with the integration simply by associating the
project with a virtual host as you would any other Zend Framework-driven website. If you can't bear
to go without knowing exactly every gory integration-related detail, see the project's README file.
I'll use this project's code as the basis for introducing key Doctrine 2 features, highlighting those
which I've grown to find particularly indispensable.

Caution

Doctrine 2 requires PHP 5.3, meaning you won't be able to use it until you've upgraded to
at least PHP 5.3.0. PHP 5.3 supports several compelling new features such as namespaces,

Easy PHP Websites with the Zend Framework 115

so if you haven't already upgraded I recommend doing so even if you wind up not using
Doctrine 2.

Introducing Doctrine

The Doctrine website defines the project as an "object-relational mapper for PHP which sits on top of
a powerful database abstraction layer". This strikes me as a rather modest description, as Doctrine's
programmatic interface is nothing short of incredible, supporting the ability to almost transparently
marry your domain models with Doctrine's data mappers, as demonstrated in this example which
adds a new record to the database:

$em = $this->_helper->EntityManager();

$account = new \Entities\Account;

$account->setUsername('wjgilmore');
$account->setEmail('wj@wjgilmore.com');
$account->setPassword('jason');
$account->setZip('43201');
$em->persist($account);
$em->flush();

Doctrine can also traverse and manipulate even the most complex schema relations using remarkably
little code. Consider this example, which adds the game "Super Mario Brothers" to a user's video
game library:

$em = $this->_helper->EntityManager();

$account = $em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore');

$game = $em->getRepository('Entities\Game')
 ->findOneByName('Super Mario Brothers');

$account->getGames()->add($game);

$em->persist($account);
$em->flush();

Later in this chapter I'll provide several examples demonstrating its relationship mapping
capabilities.

Incidentally, the findOneByUsername() method used in the above example is another great Doctrine
feature, known as a magic finder. Doctrine dynamically makes similar methods available for all of

Easy PHP Websites with the Zend Framework 116

your table columns. For instance, if a table includes a publication_date column, a finder method
named findByPublicationDate() will automatically be made available to you!

Iterating over an account's game library is incredibly easy. Just iterate over the results returned by
$account->getGames() method like any other object array:

foreach ($user->getGames() as $game)
{
 echo "{$game->title}
";
}

Doctrine's capabilities extend far beyond its programmatic interface. You can use it's CLI
(command-line interface) to generate and update schemas, and can use YAML, XML or (my
favorite) DocBlock annotations to define column names, data types, and even table associations. I'll
talk about these powerful features in the section "Building Persistent Classes".

Note

Doctrine 2 is a hefty bit of software, so although this chapter provides you with enough
information to get you started, it doesn't even scratch the surface in terms of Doctrine's
capabilities. My primary goal is to provide you with enough information to get really
excited about the prospects of using Doctrine within your applications. Of course, I also
recommend reviewing the GameNomad code, as Doctrine 2 is used throughout.

Introducing the z2d2 Project

Figuring out how to integrate Doctrine 2 into the Zend Framework was a pretty annoying and
time-consuming process, one which involved perusing countless blog posts, browsing GitHub code,
and combing over the Doctrine and Zend Framework documentation. The end result is however a
successful implementation, one which I've subsequently successfully integrated into the example
GameNomad website. However, because the GameNomad website is fairly complicated I've opted
to stray from the GameNomad theme and instead focus on a project which is much smaller in scope
yet nonetheless manages to incorporate several crucial Doctrine 2 features. I've dubbed this project
z2d2, and it's available as part of your code download, located in the z2d2 directory.

The project incorporates fundamental Doctrine features, including DocBlock annotations, use of the
Doctrine CLI, magic finders, basic CRUD features, and relationship management. I'll use the code
found in this project as the basis for instruction throughout the remainder of this chapter, so if you
haven't already downloaded the companion code, go ahead and do so now.

Easy PHP Websites with the Zend Framework 117

Key Configuration Files and Parameters

As I mentioned at the beginning of this chapter, the Doctrine integration process is a fairly lengthy
process and one which will certainly change with the eventual Zend Framework 2 release. However
so as not to entirely leave you in the dark I'd like to at least provide an overview of the sample project's
files and configuration settings which you'll need to understand in order to integrate Doctrine 2 into
your own Zend Framework projects:

• The application/configs/application.ini file contains nine configuration parameters which
Doctrine uses to connect to the database and determine where the class entities and proxies are
located.

• The library/Doctrine directory contains three directories: Common, DBAL, and ORM. These three
directories contain the object relational mapper, database abstraction layer, and other code
responsible for Doctrine's operation.

• The library/WJG/Resource/Entitymanager.php file contains the resource plugin which defines
the entity manager used by Doctrine to interact with the database.

• The application/Bootstrap.php file contains a method named _initDoctrine() which is
responsible for making the class entities and repositories available to the Zend Framework
application.

• The library/WJG/Controller/Action/Helper/EntityManager.php file is an action helper
which is referenced within the controllers instead of the lengthy call which would otherwise have
to be made in order to retrieve a reference to entity manager resource plugin.

• The application/scripts/doctrine.php file initializes the Doctrine CLI, and bootstraps the
Zend Framework application resources, including the entity manager resource plugin. The CLI is
run by executing the doctrine script, also found in application/scripts.

• The application/models/Entities directory contains the class entities. I'll talk more about the
purpose of entities in a later section.

• The application/models/Repositories directory contains the class repositories. I'll talk more
about the role of repositories in a later section.

• The application/models/Proxies directory contains the proxy objects. Doctrine generates
proxy classes by default, however the documentation strongly encourages you to disable
autogeneration, which you can do in the application/config.ini file.

Easy PHP Websites with the Zend Framework 118

Building Persistent Classes

In my opinion Doctrine's most compelling feature is its ability to make PHP classes persistent simply
by adding DocBlock annotations to the class, meaning that merely adding those annotations will
empower Doctrine to associate CRUD features with the class. An added bonus of these annotations
is the ability to generate and maintain table schemas based on the annotation declarations.

These annotations are added to your model in a very unobtrusive way, placed within PHP comments
spread throughout the class file. The below listing presents a simplified version of the Account
entity found in application/models/Entities/Account.php, complete with the annotations. An
explanation of key lines follows the listing.

01 <?php
02
03 namespace Entities;
04
05 /**
06 * @Entity @Table(name="games")
07 */
08 class Game
09 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue(strategy="AUTO")
13 */
14 private $id;
15
16 /** @Column(type="string", length=255) */
17 private $name;
18
19 /** @Column(type="string", length=255) */
20 private $publisher;
21
22 /** @Column(type="decimal",scale=2, precision=5) */
23 private $price;
24
25 public function getId()
26 {
27 return $this->id;
28 }
29
30 public function getName()
31 {
32 return $this->name;
33 }
34

Easy PHP Websites with the Zend Framework 119

35 public function setName($name)
36 {
37 $this->name = $name;
38 }
39
40 ...
41
42 public function setPassword($password)
43 {
44 $this->password = md5($password);
45 }
46
47 ...
48
49 public function getPrice()
50 {
51 return $this->price;
52 }
53
54 public function setPrice($price)
55 {
56 $this->price = $price;
57 }
58
59 }

Let's review the code:

• Line 03 declares this class to be part of the namespace Entities. Doctrine refers to persistable
classes as entities, which are defined as objects with identity. Therefore for organizational
purposes I've placed these persistable classes in a the directory application/models/Entities,
and use PHP 5.3's namespacing feature within the controllers to reference the class, which is much
more convenient than using the underscore-based approach embraced by the Zend Framework
(which is unavoidable since namespaces are a PHP 5.3-specific feature). Therefore while it's
not a requirement in terms of making a class persistable, I nonetheless suggest doing it for
organizational purposes.

• Line 06 declares the class to be an entity (done using the @Entity annotation). Doctrine will by
default map the class to a database table of the same name as the class, however if you prefer to
use a different name then you can override the default using the @Table annotation.

• Lines 11-14 define an automatically incrementing integer-based primary key named id.

• Line 16 defines a column named name using type varchar of length 255. Doctrine will by default
define this column as NOT NULL.

Easy PHP Websites with the Zend Framework 120

• Line 22 defines a column named price using type decimal of scale 2 and precision 5.

• Lines 25-57 define the getters and setters (accessors and mutators) used to interact with this object.
You are free to modify these methods however necessary. For instance, check out the project's
Account model, which encrypts the supplied password using PHP's md5() function.

Note

DocBlock annotations are only one of several supported solutions for building database
schemas. Other schema definition options are available, including using YAML- and XML-
based formats. See the Doctrine 2 documentation for more details.

Generating and Updating the Schema

With the entity defined, you can generate the associated table schema using the following command:

$ cd application
$./scripts/doctrine orm:schema-tool:create
ATTENTION: This operation should not be executed in an production enviroment.

Creating database schema...
Database schema created successfully!

If you make changes to the entity, you can update the schema using the following command:

$./scripts/doctrine orm:schema-tool:update --force

It goes without saying that this feature is intended for use during the development process, and
should not be using this command in a production environment. Alternatively, you can pass this
command the --dump-sql to obtain a list of SQL statements which can subsequently be executed on
the production server. Or better, consider using a schema management solution such as Liquibase
(http://www.liquibase.org).

Finally, you can drop all tables using the following command:

$./scripts/doctrine orm:schema-tool:drop --force
Dropping database schema...
Database schema dropped successfully!

With your entities defined and schemas generated, move on to the next section where you'll learn
how to query and manipulate the database tables via the entities.

Easy PHP Websites with the Zend Framework 121

Querying and Manipulating Your Data

One of Doctrine's most compelling features is its ability to map table schemas to an object-oriented
interface. Not only can you use the interface to conveniently carry out the usual CRUD (create,
retrieve, update, delete) tasks, but Doctrine will also make your life even easier by providing a
number of so-called "magic finders" which allow you to explicitly identify the argument you're
searching for as part of the method name. In this section I'll show you how to use Doctrine to retrieve
and manipulate data.

Inserting, Updating, and Deleting Records

Whether its creating user accounts, updating blog entries, or deleting comment spam, you're
guaranteed to spend a great deal of time developing features which insert, modify, and delete
database records. In this section I'll show you how to use Doctrine's native capabilities to perform
all three tasks.

Inserting Records

Unless you've already gone ahead and manually inserted records into the tables created in the
previous section, the z2d2 database is currently empty, so let's begin by adding a new record:

01 $em = $this->_helper->EntityManager();
02
03 $account = new \Entities\Account;
04
05 $account->setUsername('wjgilmore');
06 $account->setEmail('example@wjgilmore.com');
07 $account->setPassword('jason');
08 $account->setZip('43201');
09 $em->persist($account);
10 $em->flush();

Let's review this example:

• Line 01 retrieves an instance of the Doctrine entity manager. The Doctrine documentation defines
the entity manager "as the central access point to ORM functionality", and it will play a central
role in all of your Doctrine-related operations.

• Line 03 creates a new instance of the Account entity, using the namespacing syntax made available
with PHP 5.3.

Easy PHP Websites with the Zend Framework 122

• Lines 05-08 set the object's fields. The beauty of this approach is that we have encapsulated
domain-specific behaviors within the class, such as hashing the password using PHP's md5()
function. See the Account entity file to understand how this is accomplished.

• Line 09 uses the entity manager's persist() method that you intend to make this data persistent.
Note that this does not write the changes to the database! This is the job of the flush() method
found on line 10. The flush() method will write all changes which have been identified by the
persist() method back to the database.

Note

It's possible to fully decouple the entity manager from the application controllers by creating
a service layer, however I've concluded that for the purposes of this exercise it would
perhaps be overkill as it would likely only serve to confuse those readers who are being
introduced to this topic for the first time. In the coming weeks I'll release a second version
of z2d2 which implements a service layer, should you want to know more about how such
a feature might be accomplished.

Modifying Records

Modifying a record couldn't be easier; just retrieve it from the database, use the entity setters to
change the attributes, and then save the record using the persist() / flush() methods demonstrated
in the previous example. I'm getting ahead of myself due to necessarily needing to retrieve a record
in order to modify it, however the method name used to retrieve the record is quite self-explanatory:

$accounts = $em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore');
$account->setZip('20171');
$em->persist($account);
$em->flush();

Deleting Records

To delete a record, you'll pass the entity object to the entity manager's remove() method:

$accounts = $em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore');
$em->remove($account);
$em->flush();

Easy PHP Websites with the Zend Framework 123

Finding Records

Let's start with Doctrine's most basic finder functionality, beginning by finding a game according
to its primary key. You'll query entities via their repository, which is the mediator situated between
the domain model and data mapping layer. Doctrine provides this repository functionality for you,
although as you'll learn later in this chapter it's possible to create your own entity repositories
which allow you to better manage custom queries related to the entity. For now though let's just
use the default repository, passing it the entity we'd like to query. We can use method chaining to
conveniently call the default repository's find() method, as demonstrated here:

01 $em = $this->_helper->EntityManager();
02
03 $account = $em->getRepository('Entities\Account')->find(1);
04
05 echo $account->getUsername();

With the record retrieved, you're free to use the accessor methods defined in the entity, as line 05
demonstrates.

To retrieve a record which matches a specific criteria, such as one which has its username set to
wjgilmore, you can pass the column name and value into the findOneBy() method via an array, as
demonstrated here:

$accounts = $em->getRepository('Entities\Account')
 ->findOneBy(array('username' => 'wjgilmore'));

Magic Finders

I find the syntax used in the previous example to be rather tedious, and so prefer to use the many
magic finders Doctrine makes available to you. For instance, you can use the following magic finder
to retrieve the very same record as that found using the above example:

$account = $em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore');

Magic finders are available for retrieving records based on all of the columns defined in your table.
For instance, you can use the findByZip() method to find all accounts associated with the zip code
43201:

$accounts = $em->getRepository('Entities\Account')
 ->findByZip('43201');

Because results are returned as arrays of objects, you can easily iterate over the results:

Easy PHP Websites with the Zend Framework 124

foreach ($accounts AS $account)
{
 echo "{$account->getUsername()}
";
}

As you'll learn in the later section "Defining Repositories", it's even possible to create your own
so-called "magic finders" by associating custom repositories with your entities. In fact, it's almost
a certainty that you'll want to do so, because while the default magic finders are indeed useful
for certain situations, you'll find that they tend to fall short when you want to search on multiple
conditions or order results.

Retrieving All Rows

To retrieve all of the rows in a table, you'll use the findAll() method:

$accounts = $em->getRepository('Entities\Account')->findAll();

foreach ($accounts AS $account)
{
 echo "{$account->getUsername()}
";
}

Introducing DQL

Very often you'll want to query your models in ways far more exotic than what has been illustrated
so far in this section. Fortunately, Doctrine provides a powerful query syntax known as the Doctrine
Query Language, or DQL, which you can use construct queries capable of parsing every imaginable
aspect of your object model. While it's possible to manually write queries, Doctrine also provides
an API called QueryBuilder which can greatly improve the readability of even the most complex
queries. For instance, the following example queries the Account model for all accounts associated
with the zip code 20171, and ordering those results according to the username column:

$qb = $em->createQueryBuilder();
$qb->add('select', 'a')
 ->add('from', 'Entities\Account a')
 ->add('where', 'a.zip = :zip')
 ->add('orderBy', 'a.username ASC')
 ->setParameter('zip', '20171');

$query = $qb->getQuery();

$accounts = $query->getResult();

Easy PHP Websites with the Zend Framework 125

foreach ($accounts AS $account)
{
 echo "{$account->getUsername()}
";
}

It's even possible to execute native queries and map those results to objects using a new Doctrine 2
feature known as Native Queries. See the Doctrine manual for more information.

Logically you're not going to want to embed DQL into your controllers, however the domain model
isn't an ideal location either. The proper location is within methods defined within custom entity
repositories. I'll show you how this is done in the later section "Defining Repositories".

Managing Entity Associations

All of the examples provided thus far are useful for becoming familiar with Doctrine syntax, however
even a relatively simple real-world application is going to require significantly more involved
queries. In many cases the queries will be more involved because the application will involve
multiple domain models which are interrelated.

Unless you're a particularly experienced SQL wrangler, you're probably well aware of just
how difficult it can be to both build and mine these associations. For instance just the three
tables (accounts, games, accounts_games) which you generated earlier in this chapter pose some
significant challenges in the sense that you'll need to create queries which can determine which
games are associated with a particular account, and also which accounts are associated with a
particular game. You'll also need to create features for associating and disassociating games with
accounts. If you're new to managing these sorts of associations, it can be very easy to devise
incredibly awkward solutions to manage these sort of relations.

Doctrine makes managing even complex associations laughably easy, allowing you to for instance
retrieve the games associated with a particular account using intuitive object-oriented syntax:

$account = $em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore');

$games = $account->getGames();

printf("%s owns the following games:
", $account->getUsername());

foreach ($games AS $game)
{
 printf("%s
", $game->getName());
}

Easy PHP Websites with the Zend Framework 126

Adding games to an account's library is similarly easy. Just associate the game with the account by
passing the game object into the account's add() method, as demonstrated here:

$em = $this->_helper->EntityManager();

$account = $em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore');

$game = $em->getRepository('Entities\Game')
 ->findOneByName('Super Mario Brothers');

$account->getGames()->add($game);

$em->persist($account);
$em->flush();

To remove a game from an account's library, use the removeElement() method:

$account = $em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore');

$game = $em->getRepository('Entities\Game')->find(1);

$account->getGames()->removeElement($game);

$em->persist($account);
$em->flush();

Configuring Associations

In order to take advantage of these fantastic features you'll need to define the nature of the
associations within your entities. Doctrine supports a variety of associations, including one-to-one,
one-to-many, many-to-one, and many-to-many. In this section I'll show you how to configure a
many-to-many association, which is also referred to as a has-and-belongs-to-many relationship. For
instance, the book's theme project is based in large part around providing registered users with the
ability to build video game libraries. Therefore, an account can have many games, and a game can
be owned by multiple users. This relationship would be represented like so:

CREATE TABLE accounts (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 username VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL
);

CREATE TABLE games (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

Easy PHP Websites with the Zend Framework 127

 name VARCHAR(255) NOT NULL,
 publisher VARCHAR(255) NOT NULL
);

CREATE TABLE accounts_games (
 account_id INTEGER UNSIGNED NOT NULL,
 game_id INTEGER UNSIGNED NOT NULL,
);

ALTER TABLE accounts_games ADD FOREIGN KEY (account_id)
 REFERENCES accounts(id);

ALTER TABLE accounts_games ADD FOREIGN KEY (game_id)
 REFERENCES games(id);

Because the idea is to associate a collection of games with an account, you'll need to use Doctrine's
Doctrine/Common/Collections/Collection interface. Incidentally this section is referring to the
same code found in the z2d2 project Account entity so I suggest opening that file and follow along.
We'll want to use the ArrayCollection class, so reference it at the top of your entity like this:

use Doctrine\Common\Collections\ArrayCollection;

Next you'll need to define the class attribute which will contain the collection, and with it the
nature of the relationship it has with another entity. This is easily the most difficult step, however
the Doctrine manual provides quite a few examples and if you rigorously model your code after
that accompanying these examples then you'll be fine. For instance, we want the Account entity to
manage a collection of games, and so the ManyToMany annotation will look like this:

/**
 * @ManyToMany(targetEntity="Game", inversedBy="accounts")
 * @JoinTable(name="accounts_games",
 * joinColumns={@JoinColumn(name="account_id",
 * referencedColumnName="id")},
 * inverseJoinColumns={@JoinColumn(name="game_id",
 * referencedColumnName="id")}
 *)
 */

private $games;

With the relationship defined, you'll want to initialize the $games attribute, done within a class
constructor:

public function __construct()
{
 $this->games = new ArrayCollection();

Easy PHP Websites with the Zend Framework 128

}

Finally, you'll want to define convenience methods for adding and retrieving games:

public function addGame(Game $game)
{
 $game->addAccount($this);
 $this->games[] = $game;
}

public function getGames()
{
 return $this->games;
}

As you can see in the addGame() method, we are updating both sides of the relationship. The Game
object's addAccount() method does not come out of thin air however; you'll define that in the Game
entity.

Defining the Game Entity Relationship

The Game entity's relationship with the Account entity must also be defined. Because we want to be
able to treat a game's associated accounts as a collection, you'll again reference ArrayCollection
class at the top of your entity just as you did with the Account entity:

use Doctrine\Common\Collections\ArrayCollection;

The inverse side of this relationship is much easier to define:

/**
 * @ManyToMany(targetEntity="Account", mappedBy="games")
 */
private $accounts;

Next, initialize the $accounts attribute in your constructor:

public function __construct()
{
 $this->accounts = new ArrayCollection();
}

Finally, you'll define the addAccount() and getAccounts() methods

public function addAccount(Account $account)
{

Easy PHP Websites with the Zend Framework 129

 $this->accounts[] = $account;
}

public function getAccounts()
{
 return $this->accounts;
}

With the association definition in place, you can begin creating and retrieving associations using
the very same code as that presented at the beginning of this section! Don't forget to regenerate the
schema however, because in doing so Doctrine will automatically create the accounts_games table
used to store the relations.

Defining Repositories

No doubt that Doctrine's default magic finders provide a great way to begin querying your database,
however you'll quickly find that many of your queries require a level of sophistication which exceed
the the magic finders' capabilities. DQL is the logical alternative, however embedding DQL into your
controllers isn't desirable, nor is polluting your domain model with SQL-specific behaviors. Instead,
you can create custom entity repositories where you can define your own custom magic finders!

To tell Doctrine you'd like to use a custom entity repository, modify the entity's @Entity annotation
to identify the repository location and name, as demonstrated here:

/**
 * @Entity (repositoryClass="Repositories\Account")
 * @Table(name="accounts")
...

Next you can use the Doctrine CLI to generate the repositories:

$./scripts/doctrine orm:generate-repositories \
 /var/www/dev.wjgames.com/application/models
Processing repository "Repositories\Account"
Processing repository "Repositories\Game"

Repository classes generated to "/var/www/dev.wjgames.com/application/models"

With the repository created, you can set about creating your own finders. For instance, suppose you
wanted to create a finder which retrieved a list of accounts created in the last 24 hours. The method
might look like this:

public function findNewestAccounts() {

Easy PHP Websites with the Zend Framework 130

 $now = new \DateTime("now");
 $oneDayAgo = $now->sub(new \DateInterval('P1D'))
 ->format('Y-m-d h:i:s');

 $qb = $this->_em->createQueryBuilder();

 $qb->select('a.username')
 ->from('Entities\Account', 'a')
 ->where('a.created >= :date')
 ->setParameter('date', $oneDayAgo);

 return $qb->getQuery()->getResult();
}

Once added to the Account repository, you'll be able to call this finder from within your controllers
just like any other:

$em = $this->_helper->EntityManager();

$accounts = $em->getRepository('Entities\Account')
 ->findNewestAccounts();

Testing Your Work

Automated testing of your persistent classes is a great way to ensure that your website is able to
access them and that you are able to properly query and manipulate the underlying database via
the Doctrine API. In this section I'll demonstrate a few basic tests. Remember that you'll need
to configure your testing environment before you can begin taking advantage of these tests. The
configuration process is discussed in great detail in Chapter 11.

Testing Class Instantiation

Use the following test to ensure that your persistent classes can be properly instantiated:

public function testCanInstantiateAccount()
{
 $this->assertInstanceOf('\Entities\Account', new \Entities\Account);
}

Testing Record Addition and Retrieval

The following test will ensure that a new user can be added to the database via the Account entity
and later retrieved using the findOneByUsername() magic finder.

Easy PHP Websites with the Zend Framework 131

public function testCanSaveAndRetrieveUser()
{

 $account = new \Entities\Account;
 $account->setUsername('wjgilmore-test');
 $account->setEmail('example@wjgilmore.com');
 $account->setPassword('jason');
 $account->setZip('43201');
 $this->em->persist($account);
 $this->em->flush();

 $account = $this->em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore-test');

 $this->assertEquals('wjgilmore-test', $account->getUsername());

}

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Talk about the advantages Doctrine provides to developers.

• Talk about the different formats Doctrine supports for creating persistent objects.

• What are DocBlock annotations?

• What is DQL and why is it useful?

• What is QueryBuilder and why is it useful?

• Why is it a good idea to create a repository should your query requirements exceed the capabilities
provided by Doctrine's magic finders?

Chapter 8. Managing User
Accounts
GameNomad is perhaps most succinctly defined as a social network for video game enthusiasts.
After all, lacking the ability to keep tabs on friends' libraries and learn more about local video games
available for trade or sale in your area, there would be little reason. These sorts of features will
depend upon the ability of a user to create and maintain an account profile. This account profile
will describe that user as relevant to GameNomad's operation, including information such as his
residential zip code, and will also serve as the foundation from which other key relationships to
games and friends will be made.

In order to give the user the ability to create and maintain an account profile, you'll need to create
a host of associated features, such as account registration, login, logout, and password recovery.
Of course, user management isn't only central to social network-oriented websites; whether you're
building a new e-commerce website or a corporate intranet, the success of your project will hinge
upon the provision of these features. Thankfully, the Zend Framework offers a robust component
called Zend_Auth which contributes greatly to your ability to create many of these features. In this
chapter I'll introduce you to this component, showing you how to create features capable of carrying
out all of these tasks.

Creating the Accounts Database Table
When creating a new model I always like to begin by designing and creating the underlying database
table, because doing so formally defines much of the data which will be visible and managed from
within the website. With the schema defined, it's a natural next step to create the associated model
and the associated attributes and behaviors which will represent the table. So let's begin by creating
the accounts table.

CREATE TABLE accounts (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 username VARCHAR(255) UNIQUE NOT NULL,
 email VARCHAR(255) UNIQUE NOT NULL,
 password CHAR(32) NOT NULL,
 zip VARCHAR(10) NOT NULL,
 confirmed BOOLEAN NOT NULL DEFAULT FALSE,
 recovery CHAR(32) NULL DEFAULT '',
 created DATETIME NOT NULL,
 updated DATETIME NOT NULL
);

Easy PHP Websites with the Zend Framework 133

Let's review the purpose of each column:

• The id column is the table's primary key. Although we'll generally retrieve records using the
account username or e-mail address, the id column nonetheless serves an important identifying
role because this value will serve as a foreign key within other tables.

• The username column stores the account's unique username which identifies the account owner
to his friends and other users.

• The email column stores the account's email address. The e-mail address is used to confirm a
newly created account, for logging the user into the website, as the vehicle for recovering lost
passwords, and for general GameNomad-related communication.

• The password column stores the account's password. This is defined as a 32 character CHAR
because for security purposes the account password will be encrypted using the MD5 hashing
algorithm. Any string encrypted using MD5 is always stored using 32 characters, and so we define
the password column to specifically fit this parameter.

• The zip column stores the user's zip code. Having a general idea of the user's location is crucial
to the GameNomad experience because it gives users the opportunity to learn more about games
which are available for borrowing, trading, or sale in their area.

• The confirmed column is used to determine whether the account's e-mail address has been
confirmed. Confirming the existence and accessibility of a newly created account's e-mail address
is important because the e-mail address will serve as the vehicle for recovering lost passwords
and for occasional GameNomad-related correspondence.

• The recovery column stores a random string which will form part of the one-time URLs used
to confirm accounts and recover passwords. You'll learn more about the role of these one-time
URLs later in the chapter.

• The created column stores the date and time marking the account's creation. This could serve
as a useful data point for determining the trending frequency of account creation following a
marketing campaign.

• The updated column stores the date and time marking the last time the user updated his account
profile.

Once you've created the accounts table, take a moment to review the Account entity found in
the GameNomad project source code. This entity is quite straightforward, insomuch that it doesn't
contain any features which are so exotic that they warrant special mention here.

Easy PHP Websites with the Zend Framework 134

Creating New User Accounts

As you'll soon learn, the code used to manage the account login and logout process is so simple that
it would seem logical to ease into this chapter by introducing these topics, however it's not practical
to test those features without first having a few accounts at our disposal. So let's begin with the task
of allowing visitors to create new GameNomad accounts. Begin by creating the Account controller,
which will house all of the actions associated with account management:

%>zf create controller Account

Next create the register action which will house the account registration logic:

%>zf create action register Account

With the Account controller and register action created, you'll typically follow the same sequence
of steps whenever an HTML form is being incorporated into a Zend Framework application. First
you'll create the registration form model (FormRegister.php in the code download), and then create
the view used to render the model (_form_register.phtml in the download), and finally write the
logic used to process the register action. Because the process of creating and configuring form
models and their corresponding views was covered in great detail in Chapter 4, I'm not going to
rehash their implementation here and will instead refer you to the code download. Instead, let's
focus on the third piece of this triumvirate: the register action. The register action as used in
GameNomad is presented next, followed by some commentary.

01 public function registerAction()
02 {
03
04 // Instantiate the registration form model
05 $form = new Application_Model_FormRegister();
06
07 // Has the form been submitted?
08 if ($this->getRequest()->isPost()) {
09
10 // If the form data is valid, process it
11 if ($form->isValid($this->_request->getPost())) {
12
13 // Does account associated with username exist?
14 $account = $this->em->getRepository('Entities\Account')
15 ->findOneByUsernameOrEmail(
16 $form->getValue('username'),
17 $form->getValue('email')
18);
19
20 if (! $account)

Easy PHP Websites with the Zend Framework 135

21 {
22
23 $account = new \Entities\Account;
24
25 // Assign the account attributes
26 $account->setUsername($form->getValue('username'));
27 $account->setEmail($form->getValue('email'));
28 $account->setPassword($form->getValue('password'));
29 $account->setZip($form->getValue('zip'));
30
31 $account->setConfirmed(0);
32
33 // Set the confirmation key
34 $account->setRecovery($this->_helper->generateID(32));
35
36 try {
37
38 // Save the account to the database
39 $this->em->persist($account);
40 $this->em->flush();
41
42 // Create a new mail object
43 $mail = new Zend_Mail();
44
45 // Set the e-mail from address, to address, and subject
46 $mail->setFrom(
47 Zend_Registry::get('config')->email->support
48);
49 $mail->addTo(
50 $account->getEmail(), "{$account->getUsername()}"
51);
52 $mail->setSubject('GameNomad.com: Confirm Your Account');
53
54 // Retrieve the e-mail message text
55 include "_email_confirm_email_address.phtml";
56
57 // Set the e-mail message text
58 $mail->setBodyText($email);
59
60 // Send the e-mail
61 $mail->send();
62
63 // Set the flash message
64 $this->_helper->flashMessenger->addMessage(
65 Zend_Registry::get('config')->messages->register->successful
66);
67
68 // Redirect the user to the home page

Easy PHP Websites with the Zend Framework 136

69 $this->_helper->redirector('login', 'account');
70
71 } catch(Exception $e) {
72 $this->view->errors = array(
73 array("There was a problem creating your account.")
74);
75 }
76
77 } else {
78
79 $this->view->errors = array(
80 array("The username or e-mail address already exists.")
81);
82
83 }
84
85 } else {
86 $this->view->errors = $form->getErrors();
87 }
88
89 }
90
91 $this->view->form = $form;
92
93 }

Let's review this code:

• Line 05 instantiates the FormRegister model, which defines the form fields and validation
procedures.

• Line 08 determines if the form has been submitted, and if so, Line 11 determines if the submitted
form information passes the validation constraints defined in the FormRegister model. If the form
data does not validate, The errors are passed to the $form view scope variable (Line 86) and the
form displayed anew (Line 91).

• If the provided form data is validated, Line 23 instantiates a new Account entity object, and the
object is populated with the form data (Lines 26-34). Note in particular how the password is
set just like the other fields despite the previously discussed requirement that the password be
encrypted within the database. This is accomplished by overriding the password mutator within
the Account entity.

• Line 34 creates the user's unique recovery key by generating a random 32 character string. The
$this->_helper->generateID(32) call is not native to the Zend Framework but rather is a

Easy PHP Websites with the Zend Framework 137

custom action helper which I've created as a convenience, since the need to generate unique strings
arises several times throughout the GameNomad website. You can find this action helper in the
library/WJG/Controller/Action/Helper/ directory.

• Line 39-40 saves the object to the database.

• If the save is successful, lines 43-61 send an account confirmation e-mail to the user using the
Zend Framework's Zend_Mail component. I'll talk more about this process in the section "Sending
E-mail Through the Zend Framework".

• After sending the e-mail, a flash message is prepared (lines 64-66)and the user is redirected to
the login page (line 68). Although you could certainly embed the notification message directly
within the flash messenger helper's addMessage() method, I prefer to manage all of the messages
together within the configuration file application.ini).

Sending E-mail Through the Zend Framework

Because the e-mail messages can be quite lengthy particularly if HTML formatting is used, I
prefer to manage these messages within their own file. In the register action presented above, the
confirmation e-mail is stored within a file named _email_confirm_email_address.phtml. Because
you'll typically want to dynamically update this e-mail with information such as the user's name, not
to mention need to pass this message to the setBodyText() method setBodyHtml() if you're sending
an HTML-formatted message), I place the message within a variable named $email, using PHP's
HEREDOC statement. For instance here is what _email_confirm_email_address.phtml looks like:

<?php

$email = <<< email
Dear {$account->getUsername()},

Your GameNomad account has been created! To complete registration,
click on the below link to confirm your e-mail address.

http://www.gamenomad.com/account/confirm/key/{$account->getRecovery()}

Once confirmed, you'll be able to access exclusive GameNomad features!

Thank you!
The GameNomad Team

Questions? Contact us at support@gamenomad.com
http://www.gamenomad.com/

email;

Easy PHP Websites with the Zend Framework 138

?>

For organizational purposes, I store these e-mail message files within application/views/scripts.
However, chances are this particular directory doesn't reside on PHP's include_path, so you'll need
to add it if you'd like to follow this convention. Rather than muddle up the configuration directive
within php.ini I prefer to add it to the set_include_path() function call within the front controller
public/index.php):

set_include_path(implode(PATH_SEPARATOR, array(
 realpath(APPLICATION_PATH . '/../library'),
 realpath(APPLICATION_PATH . '/../application/views/scripts'),
 get_include_path(),
)));

Configuring Zend_Mail to Use SMTP

Zend_Mail will by default rely upon the server's Sendmail daemon to send e-mail, which is installed
and configured on most Unix-based systems by default. However, if you're running Windows or
would otherwise like to use SMTP to send e-mail you'll need to configure Zend_Mail so it can
authenticate and connect to the SMTP server.

Because you might send e-mail from any number of actions spread throughout the site, you'll want
this configuration to be global. I do so by adding a method to the Bootstrap.php file which executes
with each request. In a high-traffic environment you'll probably want to devise a more efficient
strategy but for most developers this approach will work just fine. Within this method (which I call
_initEmail) you'll pass the SMTP server's address, port, type of protocol used if the connection is
secure, and information about the account used to send the e-mail, including the account username
and password. I store all of this information within the application.ini file for easy maintenance.
For instance, the following snippet demonstrates how you would define these parameters to send e-
mail through a Gmail account:

email.server = "smtp.gmail.com"
email.port = 587
email.username = "example@gmail.com"
email.password = "secret"
email.protocol = "tls"

The _initEmail() method will retrieve these parameters, pass them to the
Zend_Mail_Transport_Smtp constructor, along with the SMTP server address, and then pass the
newly created Zend_Mail_Transport_Smtp object to Zend_Mail's setDefaultTransport() method.
The entire _initEmail() method is presented here:

Easy PHP Websites with the Zend Framework 139

protected function _initEmail()
{

 $emailConfig = array(
 'auth'=> 'login',
 'username' => Zend_Registry::get('config')->email->username,
 'password' => Zend_Registry::get('config')->email->password,
 'ssl' => Zend_Registry::get('config')->email->protocol,
 'port' => Zend_Registry::get('config')->email->port
);

 $mailTransport = new Zend_Mail_Transport_Smtp(
 Zend_Registry::get('config')->email->server, $emailConfig);

 Zend_Mail::setDefaultTransport($mailTransport);

}

With _initEmail() in place, you can go about sending e-mail anywhere within your application!

Confirming the Account

After the account has been successfully created, a confirmation e-mail will be generated and sent to
the account's e-mail address. This e-mail contains a link known as a "one-time URL" which uniquely
identifies the account by passing the value stored in the account record's recovery column. The URL
is generated by inserting the account's randomly generated recovery key into the e-mail body stored
within _email_confirm_email_address.phtml. The particular line within this file which creates
the URL looks like this:

http://www.gamenomad.com/account/confirm/key/{$account->recovery}

When the user clicks this URL he will be transported to GameNomad's account confirmation page,
hosted within the Account controller's confirm action. The action code is presented next, followed
by a breakdown of relevant lines.

01 public function confirmAction()
02 {
03
04 $key = $this->_request->getParam('key');
05
06 // Key should not be blank
07 if ($key != "")
08 {
09

Easy PHP Websites with the Zend Framework 140

10 $em = $this->getInvokeArg('bootstrap')
11 ->getResource('entityManager');
12
13 $account = $em->getRepository('Entities\Account')
14 ->findOneByRecovery($this->_request->getParam('key'));
15
16 // Was the account found?
17 if ($account) {
18
19 // Account found, confirm and reset recovery attribute
20 $account->setConfirmed(1);
21 $account->setRecovery("");
22
23 // Save the account to the database
24 $em->persist($account);
25 $em->flush();
26
27 // Set the flash message and redirect the user to the login page
28 $this->_helper->flashMessenger->addMessage(
29 Zend_Registry::get('config')->messages
30 ->register->confirm->successful
31);
32 $this->_helper->redirector('login', 'account');
33
34 } else {
35
36 // Set flash message and redirect user to the login page
37 $this->_helper->flashMessenger->addMessage(
38 Zend_Registry::get('config')->messages
39 ->register->confirm->failed
40);
41 $this->_helper->redirector('login', 'account');
42
43 }
44
45 }
46
47 }

Let's review several relevant lines of the confirm action:

• Line 13-14 retrieves the account record associated with the recovery key passed via the URL.

• If the key is found (line 17), the account is confirmed, the recovery key is deleted, and the changes
are saved to the database (lines 20-25)

Easy PHP Websites with the Zend Framework 141

• Once the updated account information has been saved back to the database, a message is assigned
to the flash messenger and the user is redirected to the Account controller's login action (lines
28-32).

• If the recovery key is not found in the database, presumably because the user had previously
confirmed his account and is for some reason trying to confirm it anew, an error message is
assigned to the flash messenger and the user is redirected to the login page (lines 37-41).

Creating the User Login Feature

With the user's account created and confirmed, he can login to the site in order to begin taking
advantage of GameNomad's special features. Like account registration, the account login feature
is typically implemented using a form model (application/models/FormLogin.php), associated
view script (application/views/scripts/_form_login.html), and a controller action which you'll
find in the Account controller's login action. Just as was the case with the earlier section covering
registration, I'll forego discussion of the form model and instead focus on the login action. As always
you can review the form model and its associated parts by perusing the relevant files within the code
download. The login action is presented next, followed by a review of relevant lines.

01 public function loginAction()
02 {
03
04 $form = new Application_Model_FormLogin();
05
06 // Has the login form been posted?
07 if ($this->getRequest()->isPost()) {
08
09 // If the submitted data is valid, attempt to authenticate the user
10 if ($form->isValid($this->_request->getPost())) {
11
12 // Did the user successfully login?
13 if ($this->_authenticate($this->_request->getPost())) {
14
15 $account = $this->em->getRepository('Entities\Account')
16 ->findOneByEmail($form->getValue('email'));
17
18 // Save the account to the database
19 $this->em->persist($account);
20 $this->em->flush();
21
22 // Generate the flash message and redirect the user
23 $this->_helper->flashMessenger->addMessage(
24 Zend_Registry::get('config')->messages->login->successful
25);

Easy PHP Websites with the Zend Framework 142

26
27 return $this->_helper->redirector('index', 'index');
28
29 } else {
30 $this->view->errors["form"] = array(
31 Zend_Registry::get('config')->messages->login->failed
32);
33 }
34
35 } else {
36 $this->view->errors = $form->getErrors();
37 }
38
39 }
40
41 $this->view->form = $form;
42
43 }

Let's review the relevant lines of this snippet:

• Line 04 instantiates a new instance of the FormLogin model, which is passed to the view on line 34.

• If the form has been submitted back to the action (line 07), and the form data has properly
validated (line 10), the action will next attempt to authenticate the user (line 13) by comparing the
provided e-mail address and password with what's on record in the database. I like to maintain
the authentication-specific code within its own protected method _authenticate()), which we'll
review in just a moment.

• If authentication is successful, lines 15-16 will retrieve the account record using the provided
e-mail address. Finally, a notification message is added to the flash messenger and the user is
redirected to GameNomad's home page.

• If authentication fails, an error message is added to the global errors array (lines 30-32) and the
login form is displayed anew.

As I mentioned, _authenticate() is a protected method which encapsulates the authentication-
specific code and establishes a new user session if authentication is successful. You could just
as easily embed this logic within your login action however I prefer my approach as it results
in somewhat more succinct code. The _authenticate() method is presented next, followed by a
review of relevant lines:

01 protected function _authenticate($data)
02 {

Easy PHP Websites with the Zend Framework 143

03
04 $db = Zend_Db_Table::getDefaultAdapter();
05 $authAdapter = new Zend_Auth_Adapter_DbTable($db);
06
07 $authAdapter->setTableName('accounts');
08 $authAdapter->setIdentityColumn('email');
09 $authAdapter->setCredentialColumn('password');
10 $authAdapter->setCredentialTreatment('MD5(?) and confirmed = 1');
11
12 $authAdapter->setIdentity($data['email']);
13 $authAdapter->setCredential($data['pswd']);
14
15 $auth = Zend_Auth::getInstance();
16 $result = $auth->authenticate($authAdapter);
17
18 if ($result->isValid())
19 {
20
21 if ($data['public'] == "1") {
22 Zend_Session::rememberMe(1209600);
23 } else {
24 Zend_Session::forgetMe();
25 }
26
27 return TRUE;
28
29 } else {
30
31 return FALSE;
32
33 }
34
35 }

Let's review the code:

• The Zend_Auth component authenticates an account by defining the account data source and
within that source, the associated account credentials. Several sources are supported, including any
database supported by the Zend Framework, LDAP, Open ID. Because GameNomad's account
data is stored within the MySQL database's accounts table, the _authenticate() method uses
Zend_Auth's Zend_Auth_Adapter_DbTable() method (line 05) to pass in the default database
adapter handle (see Chapter 6 for more about this topic), and then uses the setTableName()
method (line 07) to define the accounts table as the account data repository. Unfortunately at the
time of this writing there is not a Doctrine-specific Zend_Auth adapter, and so you are forced to
define two sets of database connection credentials within the application.ini file in order to

Easy PHP Websites with the Zend Framework 144

take advantage of Zend_Auth in this manner, however it is a small price to pay in return for the
conveniences otherwise offered by this component.

• Lines 08 - 09 associate the accounts table's email and password columns as those used to establish
an account's credentials. These are the two items of information a user is expected to pass along
when prompted to login.

• Line 10 uses the setCredentialTreatment() method to determine how the password should be
passed into the query. Because the password is encrypted within the accounts table using the MD5
algorithm, we need to make sure that the provided password is similarly encrypted in order to
determine whether a match exists. Additionally, because the user must confirm his account before
being allowed to login, we also check whether the table's confirmed column has been set to 1.

• Lines 12 and 13 define the account identifier (the e-mail address) and credential (the password)
used in the authentication attempt. These values are passed into the _authenticate() method,
and originate as $_POST variables passed in via the login form.

• Line 15 instantiates a new instance of Zend_Auth, and passes in the authentication configuration
data into the object using the authenticate() method.

• Line 18 determines whether the provided authentication identifier and credential exists as a pair
within the database. If so, the user has successfully authenticated and we next determine whether
the user has specified whether he would like to remain logged-in on his computer for two weeks, as
determined by whether the check box on the login form was selected. If so, the cookie's expiration
date will be set for two weeks from the present (the session cookie is used by Zend_Auth for
all subsequent requests to determine whether the user is logged into the website). Otherwise, the
cookie's expiration date will be set in such a way that the cookie will expire once the user closes
the browser.

• Finally, a value of either TRUE or FALSE will be returned to the login action, indicating whether
the authentication attempt was successful or has failed, respectively.

Determining Whether the User Session is Valid

After determining that the user has successfully authenticated, Zend_Auth will place a cookie on
the user's computer which can subsequently be used to determine whether the user session is still
valid. You can use Zend_Auth's hasIdentity() method to verify session validity. If valid, you can
use the getIdentity() method to retrieve the account's identity (which in the case of GameNomad
is the e-mail address).

$auth = Zend_Auth::getInstance();

Easy PHP Websites with the Zend Framework 145

if ($auth->hasIdentity()) {

 $identity = $auth->getIdentity();

 if (isset($identity)) {
 printf("Welcome back, %s", $identity);
 }

}

However, you're likely going to want to determine whether a valid account session exists at any given
point within the website, meaning you'll need to execute the above code with every page request.
My suggested solution is to insert this logic into a custom action helper and then call this action
helper from within the application bootstrap (meaning the action helper will be called every time
the application executes). Because this action helper can be used to initialize other useful global
behaviors and other attributes, I've called it Initializer.php and for organizational purposes have
placed it within /library/WJG/Controller/Action/Helper/. The authentication-relevant part of
the Initializer action helper is presented next, followed by a discussion of the relevant lines.

01 $auth = Zend_Auth::getInstance();
02
03 if ($auth->hasIdentity()) {
04
05 $identity = $auth->getIdentity();
06
07 if (isset($identity)) {
08
09 $em = $this->getActionController()
10 ->getInvokeArg('bootstrap')
11 ->getResource('entityManager');
12
13 // Retrieve information about the logged-in user
14 $account = $em->getRepository('Entities\Account')
15 ->findOneByEmail($identity);
16
17 Zend_Layout::getMvcInstance()->getView()->account = $account;
18
19 }
20
21 }

Let's review the code:

• Line 02 retrieves a static instance of the Zend_Auth object

Easy PHP Websites with the Zend Framework 146

• Line 03 determines whether the user is currently logged in. If so, line 05 retrieves the identity of
the currently logged-in user as specified by his username.

• Line 09 retrieves the entity manager, which is needed on lines 14-15 in order to retrieve
information about the logged-in user.

• Line 17 passes the retrieved account object into the application's view scope using a little-
known feature of the Zend Framework which allows you to inject values into the view via the
Zend_Layout component's getView() method.

With the Initializer custom action helper defined, you'll next need to add a method to the bootstrap
/application/Bootstrap.php) which will result in Initializer being executed each time the
application initializes. The following example method defines the custom action helper path using
the Zend_Controller_Action_HelperBroker's addPath() method, and then executes the action using
the Zend_Controller_Action_HelperBroker's addHelper() method:

protected function _initGlobalVars()
{

 Zend_Controller_Action_HelperBroker::addPath(
 APPLICATION_PATH.'/../library/WJG/Controller/Action/Helper'
);

 $initializer = Zend_Controller_Action_HelperBroker::addHelper(
 new WJG_Controller_Action_Helper_Initializer()
);

}

Because the account object is injected into the view scope, you can determine whether a valid
session exists within both controllers and views by referencing the $this->view->account and
$this->account variables, respectively. For instance, the following code might be used to determine
whether a valid session exists. If so, a custom welcome message can be provided, otherwise
registration and login links can be presented.

<?php if (! $this->account) { ?>
 <p>
 Login to your account |
 Register
 </p>
<?php } else { ?>
 <p>
 Welcome back, <?= $this->account->username; ?>
 &middot;

Easy PHP Websites with the Zend Framework 147

 Logout
 </p>
<?php } ?>

A GameNomad screenshot using similar functionality to determine session validity is presented in
Figure 8.1.

Figure 8.1. Greeting an authenticated user

Creating the User Logout Feature

Particularly if the user is interacting with your website via a publicly accessible computer he will
want to be confident that his session is terminated before walking away. Fortunately, logging the
user out is easily accomplished using Zend_Auth's clearIdentity() method, as demonstrated here:

public function logoutAction()
{
 Zend_Auth::getInstance()->clearIdentity();
 $this->_helper->flashMessenger->addMessage('You are logged out of your account');
 $this->_helper->redirector('index', 'index');
}

Creating an Automated Password Recovery Feature

With everything else you need to accomplish on any given day, the last thing you'll want to deal
with is responding to requests to reset an account password. Fortunately, creating an automated
password recovery feature is quite easy. Like the account confirmation feature introduced earlier in
this chapter, the password recovery feature will depend upon the use of a one-time URL sent via e-

Easy PHP Websites with the Zend Framework 148

mail which the user will click in order to confirm his identity. Once the user clicks this URL, the
user's account will be updated with a new random password, and that random password will be e-
mailed to the user. Once the user logs into the website, he can change the password as desired.

The user will initiate the password recovery process by presumably clicking on a link located
somewhere within the login screen. In the case of GameNomad he'll be transported to /account/
lost, and prompted to provide his e-mail address (see Figure 8.2). If the e-mail address is associated
with a registered user, then a recovery key is generated and and a one-time URL is e-mailed to the
user.

Figure 8.2. Recovering a lost password

The lost action used to generate and send the recovery key to the provided e-mail address is
presented next. Frankly there's nothing in this action which you haven't already seen several times,
so I'll forego the usual summary.

01 public function lostAction()
02 {
03
04 $form = new Application_Model_FormLost();
05
06 if ($this->getRequest()->isPost()) {
07
08 // If form is valid, make sure e-mail address is associated
09 // with an account
10 if ($form->isValid($this->_request->getPost())) {
11
12 $account = $this->em->getRepository('Entities\Account')
13 ->findOneByEmail($form->getValue('email'));
14

Easy PHP Websites with the Zend Framework 149

15 // If account is found, generate recovery key and mail it to
16 // the user
17 if ($account)
18 {
19
20 // Generate a random password
21 $account->setRecovery($this->_helper->generateID(32));
22
23 $this->em->persist($account);
24 $this->em->flush();
25
26 // Create a new mail object
27 $mail = new Zend_Mail();
28
29 // Set the e-mail from address, to address, and subject
30 $mail->setFrom(Zend_Registry::get('config')->email->support);
31 $mail->addTo($form->getValue('email'));
32 $mail->setSubject("GameNomad: Generate a new password");
33
34 // Retrieve the e-mail message text
35 include "_email_lost_password.phtml";
36
37 // Set the e-mail message text
38 $mail->setBodyText($email);
39
40 // Send the e-mail
41 $mail->send();
42
43 $this->_helper->flashMessenger
44 ->addMessage('Check your e-mail for further instructions');
45 $this->_helper->redirector('login', 'account');
46
47 }
48
49 } else {
50 $this->view->errors = $form->getErrors();
51 }
52
53 }
54
55 $this->view->form = $form;
56
57 }

The e-mail message sent to the user is found within the file _email_lost_password.phtml (and
included into the lost action on line 34). When sent to the user the e-mail looks similar to that found
in Figure 8.3.

Easy PHP Websites with the Zend Framework 150

Figure 8.3. The password recovery e-mail

Once the user clicks on the one-time URL he is transported back to the GameNomad website,
specifically to the Account controller's recover action. This action will retrieve the account

Easy PHP Websites with the Zend Framework 151

associated with the recovery key passed along as part of the one-time URL. If an account is found,
a random eight-character password will be generated and sent to the e-mail address associated with
the account. The recover action code is presented next. As was the case with the lost action, there's
nothing new worth discussing in the recover action, so I'll just provide the code for your perusal:

01 public function recoverAction()
02 {
03
04 $key = $this->_request->getParam('key');
05
06 if ($key != "")
07 {
08
09 $account = $this->em->getRepository('Entities\Account')
10 ->findOneByRecovery($key);
11
12 // If account is found, generate recovery key and mail it to
13 // the user
14 if ($account)
15 {
16
17 // Generate a random password
18 $password = $this->_helper->generateID(8);
19 $account->setPassword($password);
20
21 // Erase the recovery key
22 $account->setRecovery("");
23
24 // Save the account
25 $this->em->persist($account);
26 $this->em->flush();
27
28 // Create a new mail object
29 $mail = new Zend_Mail();
30
31 // Set the e-mail from address, to address, and subject
32 $mail->setFrom(Zend_Registry::get('config')->email->support);
33 $mail->addTo($account->getEmail());
34 $mail->setSubject("GameNomad: Your password has been reset");
35
36 // Retrieve the e-mail message text
37 include "_email_recover_password.phtml";
38
39 // Set the e-mail message text
40 $mail->setBodyText($email);
41
42 // Send the e-mail

Easy PHP Websites with the Zend Framework 152

43 $mail->send();
44
45 $this->_helper->flashMessenger->addMessage(
46 Zend_Registry::get('config')->messages
47 ->account->password->reset
48);
49 $this->_helper->redirector('login', 'account');
50
51 }
52
53 }
54
55 // Either a blank key or non-existent key was provided
56 $this->_helper->flashMessenger->addMessage(
57 Zend_Registry::get('config')
58 ->messages->account->password->nokey
59);
60 $this->_helper->redirector('login', 'account');
61
62 }

Testing Your Work

While a user may forgive the occasionally misaligned graphic or other minor error, broken account
management features are sure to be wildly frustrating and perhaps grounds for checking out a
competing website. Therefore given the mission-critical importance of the features introduced in
this chapter, you're going to want to put them through a rigorous testing procedure to make sure
everything is working properly. In this section I'll guide you through several of the most important
tests.

Making Sure the Login Form Exists

Because it's not possible for the user to login if the login form is inexplicably missing, consider
running a simple sanity check to confirm the login form is indeed being rendered within the login
view. You can use the assertQueryCount() method to confirm that a particular element and
associated DIV ID exist within the rendered page, as demonstrated here:

public function testLoginActionContainsLoginForm()
{
 $this->dispatch('/account/login');
 $this->assertQueryCount('form#login', 1);
 $this->assertQueryCount('input[name~="email"]', 1);
 $this->assertQueryCount('input[name~="password"]', 1);
 $this->assertQueryCount('input[name~="submit"]', 1);

Easy PHP Websites with the Zend Framework 153

}

Testing the Login Process

Logically you'll want to make sure your login form is operating flawlessly, as there are few issues
more frustrating to users than the inability to access their account due to no fault of their own.
Thankfully it's really easy to determine whether the login form has successfully authenticated a user,
because the action will only redirect the user to the home page if the credentials are deemed valid. The
following test will POST a set of valid credentials to the Account controller's login action. Because
they are valid, we will assert that the redirection has indeed occurred (using the assertRedirectTo()
method).

public function testValidLoginRedirectsToHomePage()
{

 $this->request->setMethod('POST')
 ->setPost(array(
 'email' => 'wj@wjgilmore.com',
 'pswd' => 'secret',
 'public' => 0
));

 $this->dispatch('/account/login');

 $this->assertController('account');
 $this->assertAction('login');

 $this->assertRedirectTo('/account/friends');

}

Because chances are you're going to want to test parts of the application which are only available
to authenticated users, you can create a private method within your test controller which can be
executed as desired within other tests, thereby consolidating the login-specific task. For instance,
here's what my login-specific method looks like:

private function _loginValidUser()
{

 $this->request->setMethod('POST')
 ->setPost(array(
 'email' => 'wj@wjgilmore.com',
 'pswd' => 'secret',
 'public' => 0
));

Easy PHP Websites with the Zend Framework 154

 $this->dispatch('/account/login');

 $this->assertRedirectTo('/account/friends');
 $this->assertTrue(Zend_Auth::getInstance()->hasIdentity());

}

With this method in place, I can call it anywhere within the test suite as needed, as demonstrated
in the next test.

Ensuring an Authenticated User Can Access a Restricted Page

Pages such as the logout page should only be accessible to authenticated users. Because such access
control is required throughout many parts of GameNomad, I've created a custom action helper called
LoginRequired which checks for a valid session. If not valid session exists, the user is redirected
to the login page. This action helper appears within the very first line of any restricted action. Of
course, you will want to make sure such helpers are indeed granting authenticated users access to
the restricted page, and so the following test will ensure an authenticated user can access the logout
action. Notice how I am using the previously created _loginValidUser() method to handle the
authentication process.

public function testLogoutPageAvailableToLoggedInUser()
{

 $this->_loginValidUser();

 $this->dispatch('/account/logout');

 $this->assertController('account');
 $this->assertAction('logout');

 $this->assertNotRedirectTo('/account/login');

}

You'll likewise want to verify that unauthenticated users cannot access restricted pages, however at
the time of this writing the Zend_Test component does not play well with redirectors used within
action helpers.

Testing the Account Registration Procedure

GameNomad requires the user to provide remarkably few items of information compared to many
registration procedures, asking only for a username, zip code, e-mail address, and password.

Easy PHP Websites with the Zend Framework 155

Nonetheless, repeatedly manually entering this data in order to thoroughly test the registration form
is an impractical use of time, and so you can instead create a test which can verify that the form is
properly receiving valid registration data and adding it to the database. Of course, this is only part
of the registration process, because the user also needs to confirm his e-mail address by clicking on
a one-time URL before he can login to the GameNomad website. I'll talk more about the matter of
model manipulation in Chapter 11. For the moment let's focus on making sure the form is working
properly.

We know that the action should redirect the user to the login page if registration is successful, and
so can create a test which determines whether the redirection occurs following registration:

public function testUsersCanRegisterWhenUsingValidData()
{

 $this->request->setMethod('POST')
 ->setPost(array(
 'username' => 'jasong123',
 'zip_code' => '43215',
 'email' => 'jason1@wjgilmore.com',
 'password' => 'secret',
 'confirm_pswd' => 'secret',
));

 $this->dispatch('/account/register');

 $this->assertRedirectTo('/account/login');

}

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Explain how Zend_Auth knows which table and columns should be used when authenticating a
user against a database.

• At a minimum, what are the five features you'll need to implement in order to offer basic user
account management capabilities?

• Talk about the important role played by the account table's recovery column within several
features described within this chapter.

Chapter 9. Creating Rich User
Interfaces with JavaScript and
Ajax
There's no use hiding it; I hate JavaScript. In years past, its frightful syntax and awkward debugging
requirements had brought me to the sheer edge of insanity on more than one occasion. I'm not
alone; the language is widely acknowledged for its ability to cause even the most even-tempered
programmer to spew profanity. To put the scope of the frustration brought about by this language
another way, consider the impressive promotion of non-violent protest espoused by the likes of John
Lennon. I speculate this penchant for pacifism was at least in part attributed to his unfamiliarity with
JavaScript.

Yet today there is really no way to call yourself a modern web developer and avoid the
language. In fact, while you might over the course of various projects alternate between several
web frameworks such as the Zend Framework, Grails (http://www.grails.org/) and Rails (http://
www.rubyonrails.org/), JavaScript will likely be the common thread shared by all projects. This is
because JavaScript is the special sauce behind the techniques used to create highly interactive web
pages collectively known as Ajax.

Ajax makes it possible to build websites which behave in a manner similar to desktop applications,
which offer a far more powerful and diverse array of user interface features such as data grids,
autocomplete, and interactive graphs. Indeed, users of popular services such as Gmail, Flickr,
and Facebook have quickly grown accustomed to these cutting-edge features. In order to stay
competitive, you'll want to integrate similar features into your website so as to help attract and
maintain an audience who has come to consider rich interactivity the norm rather than a novelty.

This puts us in a bit of a quandary: coding in JavaScript can be a drag, but it's become an
unavoidable part of modern web development. Fortunately, many other programmers have come to
the same conclusion, and so have put a great deal of work into building several powerful JavaScript
frameworks which go a long way towards streamlining JavaScript's scary syntax.

In this chapter I'll introduce you JavaScript and the Ajax development paradigm, focusing on the
popular jQuery JavaScript framework (http://www.jquery.com). jQuery happens to be so easy to use
that it almost makes JavaScript development fun!

Easy PHP Websites with the Zend Framework 157

Introducing JavaScript

Because JavaScript is interpreted and executed by the browser, you'll either embed it directly into
the web page, or manage it within a separate file in a manner similar to that typically done with CSS.
The latter of these two approaches is recommended. The following example demonstrates how an
external JavaScript file can be referenced:

01 <html>
02 <head>
03 <script type="text/javascript" src="/javascript/myjavascript.js"></script>
04 </head>
05 <body>
06 ...
07 </body>
08 </html>

In the context of the Zend Framework, the javascript directory referenced in line 03 would reside
within the /public/javascript/ directory, so if this directory doesn't exist, go ahead and create it
now. Next create the myjavascript.js file, and place it in the directory. Within that file, add just
a single line:

alert("I love video games!");

Load the page into the browser, and you'll see an alert box appear atop the browser window, as
shown in Figure 9.1.

Figure 9.1. Creating a JavaScript alert window

Easy PHP Websites with the Zend Framework 158

While the approach of referencing an external script is recommended, for testing purposes you might
occasionally prefer to just directly embed the JavaScript into the HTML like so:

<html>
 <head>
 <script type="text/javascript">
 alert("I love video games!");
 </script>
 </head>
 <body>
 ...
 </body>
</html>

Syntax Fundamentals

JavaScript sports countless features, and any attempt to cover even the fundamentals within a single
chapter, let alone a single section, would be quite unrealistic. In fact I have cut out a great deal of
original draft material in an attempt to provide you with only what's necessary to meet this chapter's
ultimate goal, which is to teach you just enough JavaScript to take advantage of jQuery and Ajax
within the context of the Zend Framework. From there, consider continuing your learning through
the numerous online JavaScript tutorials, or by picking up one of the books mentioned in the below
note.

Note

Although many great JavaScript books have been published over the years, I've long
considered "Beginning JavaScript, Third Edition", co-authored by Paul Wilton and Jeremy
McPeak, to be particularly indispensable.

Creating and Using Variables

Like PHP, you'll want to regularly create and reference variables within JavaScript. You can formally
define variables by declaring them using the var statement, like so:

var message;

JavaScript is a case-sensitive language, meaning that message and Message are treated as two
separate variables. You can also assign the newly declared variable a default value at creation time,
like so:

var message = 'I love video games!';

Easy PHP Websites with the Zend Framework 159

Alternatively, JavaScript will automatically declare variables simply by the act of assigning a value
to one, like so:

message = 'I love video games!';

I suggest using the former approach, declaring your variables at the top of the script when possible,
perhaps accompanied by a JavaScript comment, which looks like this:

// Declare the default message
var message = 'I love video games!';

One aspect of JavaScript variable declarations which seems to confound so many developers is
scope. However the confusion is easily clarified: whenever a variable is declared outside of a function
(JavaScript functions are introduced in the next section), it is declared in the global scope. This is
in contrast to JavaScript's behavior when declaring variables within a function. When declaring a
variable within a function, it has local scope when declared using the var keyword; otherwise, it has
global scope. It is very important that you memorize this simple point of differentiation, because it
causes no end of confusion for those who neglect to heed this advice.

Creating Functions

Like PHP it's possible to create custom JavaScript functions which can accept parameters and
return results. For instance, let's create a reusable function which displays the alert box presented
in previous examples:

01 <html>
02 <head>
03 <script type="text/javascript">
04
05 // Displays a message via an alert box
06 function message()
07 {
08 // Declare the default message
09 var message = "I love video games!";
10
11 // Present the alert box
12 alert(message);
13 }
14 </script>
15 </head>
16 <body>
17 ...
18 </body>
19 </html>

Easy PHP Websites with the Zend Framework 160

As you can see, the function's declaration and enclosure look very similar to standard PHP syntax.
Of course, like PHP the message() function won't execute until you call it, so insert the following
line after line 13:

message();

Reloading the page will produce the same result shown in Figure 9.1.

You can pass input parameters into a JavaScript function just as you do with PHP; when defining
the function just specify the name of the variable as it will be used within the function body. For
instance, let's modify the message() method to pass along a revised statement:

01 // Displays a message via an alert box
02 function message(user, hobby)
03 {
04 // Present the alert box
05 alert(user + " is the " + hobby + " player of the year!");
06 }

You can then pass along a user's name and their favorite pastime to create a custom message:

message("Jason", "Euchre");

Reloading the browser window produces an alert box identical to that shown in Figure 9.2.

Figure 9.2. Using a custom function

Easy PHP Websites with the Zend Framework 161

Tip

Like PHP, JavaScript comes with quite a few built-in functions. You can peruse a directory
of these functions here: http://www.javascriptkit.com/jsref/.

Working with Events

Much of your time working with JavaScript will be spent figuring out how to make it do something
in reaction to a user action, for instance validating a form when a user presses a submit button. In fact,
you can instruct JavaScript to do something only after the page has completely loaded by embedding
the onload() event handler into the page. For instance, you can direct our custom message() function
to execute after the page is loaded by modifying the body element:

<html>
 <head>
 <script type="text/javascript">

 // Displays a message via an alert box
 function message()
 {
 // Declare the default message
 var message = 'I love video games!';

 // Present the alert box
 alert(message);
 }
 </script>
 </head>
 <body onload="message()">
 ...
 </body>
</html>

Reload this example, and you'll see the alert window appear. The difference is that the window
appears only after all of the page elements have completely loaded into the browser window. This is
an important concept because you'll often write JavaScript code which is intended to interact with
specific page elements such as a div element assigned the ID game. If the JavaScript happens to
execute before this element has been loaded into the browser, then the desired functionality is sure
not to occur. Therefore you'll find this event-based approach to ensuring the JavaScript executes
only after the desired page elements are available to be quite common.

So how do you cause JavaScript to execute based on some other user action, such as clicking a
submit button? In addition to onload(), JavaScript supports numerous other event handlers such as

Easy PHP Websites with the Zend Framework 162

onclick(), which will cause a JavaScript function to execute when an element attached to the event
handler is clicked. Add the following code within the body tag (and remove the onload() function
from the body element) for an example:

<input type="submit" name="submit" value="Click Me!" onclick="message();">

The button and window which pops up once the button is clicked is shown in Figure 9.3.

Figure 9.3. Executing an action based on some user event

The same behavior is repeated when using a simple hyperlink, an image, or almost any other element
for that matter. For instance, try adding the following two lines to the page and clicking on the
corresponding elements:

Click me right now!

<h1 onclick="message();">I'm not a link but click me anyway!</h1>

See Table 9-1 for a list of other useful JavaScript handlers. Try swapping out the onclick handler
used in the previous examples with handlers found in this table to watch their behavior in action.

Table 9.1. Useful JavaScript Event Handlers

Event Handler Description

onblur Executes when focus is removed from a select, text, or textarea
form field.

Easy PHP Websites with the Zend Framework 163

Event Handler Description

onchange Executes when the text in an input form field is changed.

onclick Executes when the element is clicked upon.

onfocus Executes when the element is placed into focus (typically an input
form field).

onload Executes when the element is loaded

onmouseover Executes when the mouse pointer is moved over an element.

onmouseout Executes when the mouse pointer is moved away from an element.

onselect Executes when text within a text or textarea form field is selected.

onsubmit Executes when a form is submitted.

onunload Executes when the user navigates away or closes the page.

Forms Validation

Let's consider one more example involving an HTML form. Suppose you wanted to ensure the user
doesn't leave any fields empty when posting a video game review to your website. According to
what's available in Table 9-1, it sounds like the onsubmit event handler will do the trick nicely. But
first we have to create the JavaScript function to ensure the form field isn't blank upon submission:

function isNotEmpty(formfield)
{
 if (formfield == "")
 {
 return false;
 } else {
 return true;
 }
}

Nothing much to review here; the isNotEmpty() function operates on the premise that if the
formfield parameter is blank, FALSE is returned, otherwise TRUE is returned.

From here, you can reuse this function as many times as you please by referencing it within another
function, which we'll call validate():

01 function validate()
02 {
03 // Retrieve the form's title field
04 title = document.getElementById("title").value;

Easy PHP Websites with the Zend Framework 164

05
06 // Retrieve the form's review field
07 review = document.getElementById("review").value;
08
09 // Verify neither field is empty
10 if (isNotEmpty(title) && isNotEmpty(review))
11 {
12 return true;
13 } else {
14 alert("All form fields are required.");
14 return false;
15 }
16 }

As this is the most complex example presented thus far, let's break down the code:

• Lines 04 and 06 use something called the Document Object Model (DOM) to retrieve the values
of the elements identified by the title and review identifiers. The DOM is a very powerful tool,
and one I'll introduce in detail in the next section.

• Line 10 uses the custom isNotEmpty() function to examine the contents of the title and review
variables. If both variables are indeed not empty, true is returned which will cause the form's
designated action to be requested. Otherwise an error message is displayed and FALSE is returned,
causing the form submission process to halt.

Finally, construct the HTML form, attaching the onsubmit event handler to the form element:

<form action="/reviews/post" method="POST" onsubmit="return validate();">
 <p>
 <label name="title">Please title your review:</label>

 <input type="text" id="title" name="title" value="" size="50" />
 </p>
 <p>
 <label name="review">Enter your review below</label>

 <textarea name="review" id="review" rows="10" cols="35"></textarea>
 </p>
 <p>
 <input type="submit" name="submit" value="Post review" />
 </p>
</form>

Should the user neglect to enter one or both of the form fields, output similar to that shown in Figure
9.4 will be presented.

Easy PHP Websites with the Zend Framework 165

Figure 9.4. Validating form fields with JavaScript

The use of the Document Object Model (DOM) to easily retrieve parts of an HTML document,
as well as user input, is a crucial part of today's JavaScript-driven features. In the next section I'll
formally introduce this feature.

Introducing the Document Object Model
Relying upon an event handler to display an alert window can be useful, however events can do so
much more. Most notably, we can use them in conjunction with a programming interface known as
the Document Object Model (DOM) to manipulate the HTML document in interesting ways. The
DOM is a standard specification built into all modern browsers which makes it trivial for you to
reference a very specific part of a web page, such as the title tag, an input tag with an id of email,
or all ul tags. You can also refer to properties such as innerHTML to retrieve and replace the contents
of a particular tag. Further, it's possible to perform all manner of analytical and manipulative tasks,
such as determining the number of li entries residing within a ul enclosure.

JavaScript provides an easy interface for interacting with the DOM, done by using a series of built-in
methods and properties. For instance, suppose you wanted to retrieve the contents of a p tag (known
as an element in DOM parlance) having an id of message. The element and surrounding HTML
might look something like this:

Easy PHP Websites with the Zend Framework 166

01 ...
02 <p id="message">Your profile has been loaded.</p>
03 <h1 id="gamertag">wjgilmore</h1>
04 Location: <b id="city">Columbus, <b id="state">Ohio
05 ...

To retrieve the text found within the p element (line 02), you would use the following JavaScript
command:

<script type="text/javascript">
 message = document.getElementById("message").innerHTML;
</script>

You can prove the text was indeed retrieved by passing the message variable into an alert box in
a line that follows:

alert("Message retrieved: " + message);

Adding the alert() function produces the alert box containing the message "Your profile has been
loaded.".

Retrieving the text is interesting, but changing the text would be even more so. Using the DOM
and JavaScript, doing so is amazingly easy. Just retrieve the element ID and assign new text to the
innerHTML property!

document.getElementById("message").innerHTML = "Your profile has been updated!";

Simply adding this to the embedded code doesn't make sense, because doing so will change the text
from the original to the updated version before you really have a chance to see the behavior in action.
Therefore let's tie this to an event by way of creating a new function:

function changetext()
{
 document.getElementById("message").innerHTML = "Your profile has been updated!";
}

Next, within the HTML body just tie the function to an onclick event handler as done earlier:

Click here to change the text

Everything you've learned so far lays the foundation for integrating Ajax-oriented features into your
website. However, because your success building Ajax-driven features is going to rest heavily upon
your ability to write clean and coherent JavaScript, in the next section I'll introduce you to the jQuery
library, which we'll subsequently use to create these great features.

Easy PHP Websites with the Zend Framework 167

Introducing jQuery

In recent years, many ambitious efforts have been undertaken to create solutions which abstracted
many of the tedious, repetitive, and difficult tasks faced by developers seeking to integrate
JavaScript-driven features into their websites. By taking advantage of these JavaScript libraries, the
most popular of which are open source and therefore freely available to all users, developers are
able to write JavaScript not only faster, but more efficiently and with less errors than ever before.
Furthermore, because many of these libraries are extendable, other enterprising developers are able
to contribute their own extensions back to the community, greatly increasing library capabilities.

JavaScript libraries also deal with another significant obstacle that beginning web developers tend
to overlook: the matter of cross-browser compatibility. Although significant improvements have
been made in recent years to ensure uniform behavior within all browsers, a great deal of pain
remains when it comes to writing cross-browser JavaScript code that is perfectly compatible in all
environments. Most JavaScript libraries remove, or at least greatly reduce, this pain by providing
you with a single interface for implementing a feature which the library will then adjust according
to the type of browser being used by the end user.

One of the most popular such libraries is jQuery (http://www.jquery.com/). Created in early 2006 by
John Resig (http://www.ejohn.org/), a seemingly tireless JavaScript guru who among other things is
a JavaScript Tool Developer for the Mozilla Corporation (the company behind the Firefox browser),
jQuery has fast become one of the web development world's most exciting technologies. With
thousands of websites already using the library, and embraced by companies such as Microsoft and
Nokia, chances are you've already marveled at its impressive features more than once.

Caution

Don't think of jQuery or any other JavaScript library as a panacea for learning JavaScript;
rather it complements and extends the language in an effort to make you a more efficient
JavaScript developer. Ultimately, gaining a sound understanding of the JavaScript language
will serve to make you a better jQuery developer, so be sure to continue brushing up on
your JavaScript skills as time allows.

Installing jQuery

jQuery is self-contained within a single JavaScript file. While you could download it directly from
the jQuery website, there's a far more efficient way to add the library to your site. Google hosts
all released versions of the library on their lightning-fast servers, and because many sites link to

Easy PHP Websites with the Zend Framework 168

Google's hosted version, chances are the user already has a copy cached within his browser. To
include the library within your site, add the following lines within the head enclosure:

<script src="http://www.google.com/jsapi"></script>
<script type="text/javascript" >
 google.load("jquery", "1");
</script>

In this example, the 1 parameter tells Google to serve the most recent stable 1.X version available.
If you need the highest release in the 1.3 branch, pass along 1.3. If you desire a specific version,
such as 1.4.4, pass that specific version number.

If you would like to peruse the source code, you can download the latest release from the jQuery
website. There you'll find a "minified" and an uncompressed version of the latest release. You should
download the uncompressed version because in the minified version all code formatting has been
eliminated, producing a smaller file size and therefore improved loading performance.

Managing Event Loading

Because much of your time spent working with jQuery will involve manipulating the HTML DOM
(the DOM comprises all of the various page elements which you may want to select, hide, toggle,
modify, animate, or otherwise manipulate), you'll want to make sure the jQuery JavaScript doesn't
execute until the entire page has loaded to the browser window. Therefore you'll want to encapsulate
your jQuery code within the google.setOnLoadCallback() method, like this:

<script type="text/javascript" >
 google.setOnLoadCallback(function() {
 alert("jQuery is cool.");
 });
</script>

Add the setOnLoadCallback() method to your newly jQuery-enabled web page, and you'll see the
alert box presented in Figure 9.5.

Easy PHP Websites with the Zend Framework 169

Figure 9.5. Triggering an alert box after the DOM has loaded

If you're not loading the jQuery library from Google's CDN, the loading event syntax will look like
this:

$(document).ready(function() {
 alert("jQuery is cool.");
});

You can use this syntax when the jQuery library is being served from your server, however when
using jQuery in conjunction with Google's content distribution mechanism you'll need to use the
former syntax.

DOM Manipulation

One of the most common tasks you'll want to carry out with jQuery is DOM manipulation.
Thankfully, jQuery supports an extremely powerful and flexible selector engine for parsing the page
DOM in a variety of ways. In this section I'll introduce you to this feature's many facets.

Retrieving an Object By ID

You'll recall from earlier in this chapter that JavaScript can retrieve a DOM object by its ID using the
getElementByID() method. Because this is such a common task, jQuery offers a shortcut for calling
this method, known as the dollar sign function. Thus, the following two calls are identical in purpose:

var title = document.getElementById("title");
var title = $("#title");

Easy PHP Websites with the Zend Framework 170

In each case, title would be assigned the object identified by a DIV such as this:

<p id="title">The Hunt for Red October, by Tom Clancy</p>

Keep in mind that in both cases title is assigned an object, and not the element contents. For
instance, you can use the object's text() method to retrieve the element contents:

alert(title.text());

To retrieve the element content length, reference the length attribute like this:

alert(title.text().length);

Several other properties and methods exist, including several which allow you to traverse an
element's siblings, children, and parents. Consult the jQuery documentation for all of the details.

Retrieving Objects by Class

To retrieve all objects assigned to a particular class, use the same syntax as that used to retrieve an
element by its ID but with a period preceding the class name rather than a hash mark:

var titles = document.getElementById(".title");
var titles = $("title");

For instance, given the following HTML, titles would be assigned an array of three objects:

<p class="title">The Hunt for Red October, by Tom Clancy</p>
<p class="title">On Her Majesty's Secret Service, by Ian Fleming</p>
<p class="title">A Spy in the Ointment, by Donald Westlake</p>

To prove that titles is indeed an array containing three objects, you can iterate over the array and
retrieve the text found within each object using the following snippet:

$.each(titles, function(index)
{
 alert($(this).text());
});

jQuery's dollar sign syntax can also be used to retrieve HTML elements. For instance, you can use
this call to retrieve the all h1 elements on the page:

var headers = $("h1");

Easy PHP Websites with the Zend Framework 171

Retrieving and Changing Object Text

As was informally demonstrated in several preceding examples, to retrieve the text you'll need to
call the object's .text() method. The following example demonstrates how this is accomplished:

<script type="text/javascript" >
 alert($("#title").text());
</script>
<body>
 <p id="title">The Hunt for Red October, by Tom Clancy</p>
</body>

To change the text, all you need to do is pass text into the .text() method. For instance, the following
example will swap out Tom Clancy's book with a book by Donald Westlake:

<script type="text/javascript">
 google.setOnLoadCallback(function() {
 $("#title").text("A Spy in the Ointment, by Donald Westlake");
 });
</script>
<body>
 <p id="title">The Hunt for Red October, by Tom Clancy</p>
</body>

Working with Object HTML

The text() method behaves perhaps a bit unexpectedly when an object's text includes HTML tags.
Consider the following HTML snippet:

<p id="title"><i>The Hunt for Red October</i>, by Tom Clancy</p>

If you were to retrieve the title ID's text using the text() method, the following string would be
returned:

The Hunt for Red October, by Tom Clancy

So what happened? The text() method will strip out any HTML tags found in the text, which might
be perfectly acceptable depending upon what you want to do with the text. However, if you'd also
like the HTML, use the html() method instead:

var title = $("#title").html();

The same concept applies when adding or replacing text. If the new text includes HTML, and you
attempt to insert it using text(), the HTML will be encoded and output as text on the page. However,

Easy PHP Websites with the Zend Framework 172

if you use html() when inserting HTML-enhanced text, the tags will be rendered by the browser
as expected.

Determining Whether a DIV Exists

Because jQuery or a server-side language such as PHP could dynamically create DOM elements
based on some predefined criteria, you'll often need to first verify an element's existence before
interacting with it. However, you can't just check for existence, because jQuery will always return
TRUE even if the DIV does not exist:

if ($("#title")) {
 alert("The title div exists!");
}

However, an easy way to verify existence is to use one of the members exposed to each available
DIV, for instance length:

if ($("#title").length > 0) {
 alert("The title div exists!");
}

Removing an Element

To remove an element from the page, use the remove() method. For instance, the following example
will remove the element identified by the news ID from the page:

$("title").remove();
...
<div id="title"><i>The Day of the Jackal</i>, by Frederick Forsyth</div>

Retrieving a Child

Many of the previous elements in this section referenced a book title and its author, with some of
the examples delimiting the book title with italics tags (i):

<div id="title"><i>The Day of the Jackal</i>, by Frederick Forsyth</div>

What if you wanted to retrieve the book title, but not the author? You can use jQuery's child selector
syntax to retrieve the value of a nested element:

var title = $("#title > i").text();

Similar features exist for retrieving an element's siblings and parents. See the jQuery documentation
for more details.

Easy PHP Websites with the Zend Framework 173

Event Handling with jQuery

Of course, all of the interesting jQuery features we've introduced so far aren't going to happen in
a vacuum. Typically DOM manipulation tasks such as those described above are going to occur in
response to some sort of user- or server-initiated event. In this section you'll learn how to tie jQuery
tasks to a variety of events. In fact, you've already been introduced to one such event, namely the
Google Ajax API's setOnLoadCallback() method. This code contained within it executes once the
method confirms that the page has successfully loaded.

jQuery can respond to many different types of events, such as a user-initiated mouse click, double-
click, or mouseover. As you'll see later in this chapter, it can also monitor for changes to web forms,
such as when the user begins to insert text into a text field, changes a select box, or presses the
submit button.

Creating Your First Event Handler

Earlier in this chapter I talked about JavaScript's predefined event handlers, including mouse click
onclick, mouse over mouseover, and form submission onsubmit). jQuery works in the same way,
although its terminology occasionally strays from that used within standard JavaScript. Table 9-2
introduces jQuery's event types.

Table 9.2. jQuery's supported event types

Event Handler Description

blur Executes when focus is removed from a select, text, or textarea
form field.

change Executes when the value of an event changes.

click Executes when an element is clicked.

dblclick Executes when an element is double-clicked.

error Executes when an element is not loaded correctly.

focus Executes when an element gains focus.

keydown Executes when the user first presses a key on the keyboard.

keypress Executes when the user presses any key on the keyboard.

keyup Executes when the user releases a key on the keyboard.

load Executes when an element and its contents have been loaded.

Easy PHP Websites with the Zend Framework 174

Event Handler Description

mousedown Executes when the mouse button is clicked atop an element.

mouseenter Executes when the mouse pointer enters the element.

mouseleave Executes when the mouse pointer leaves the element.

mousemove Executes when the mouse pointer moves while inside an element

mouseout Executes when the mouse pointer leaves the element.

mouseover Executes when the mouse pointer enters the element.

mouseup Executes when the mouse button is released while atop an
element.

resize Executes when the size of the browser window changes.

scroll Executes when the user scrolls to a different place within the
element.

select Executes when the user selects text residing inside an element.

unload Executes when the user navigates away from the page.

jQuery actually supports numerous approaches to tying an event to the DOM, however the easiest
involves using an anonymous function. In doing so, we'll bind the page element to one of the events
listed in Table 9-2, defining the function which will execute when the event occurs. The following
example will toggle the CSS class of the paragraph assigned the ID title:

01 <style type="text/css">
02 .clicked { background: #CCC; padding: 2px;}
03 </style>
04
05 <script type="text/javascript" >
06
07 google.load("jquery", "1");
08
09 google.setOnLoadCallback(function() {
10 $("#title").bind("click", function(e){
11 $("#title").toggleClass("clicked");
12 });
13 });
14
15 </script>
16
17 </head>
18 <body>

Easy PHP Websites with the Zend Framework 175

19 <p id="title">The Hunt for Red October, by Tom Clancy</p>
20 </body>

Let's review the code:

• Lines 01-03 define the style which will be toggled each time the user clicks on the paragraph.

• Lines 10-12 define the event handler, binding an anonymous function to the element ID title. Each
time this element ID is clicked, the CSS class clicked will be toggled.

• Line 19 defines the paragraph assigned the element ID title.

Try executing this script to watch the CSS class change each time you click on the paragraph. Then
try swapping out the click event with some of the others defined in Table 9-2.

Introducing Ajax
You might be wondering why I chose to name this section title "Introducing Ajax". After all, haven't
we been doing Ajax programming in many of the prior examples? Actually, what we've been doing
is fancy JavaScript programming involving HTML, CSS and the DOM. As defined by the originator
of the term Ajax Jesse James Garrett, several other requisite technologies are needed to complete the
picture, including notably XML (or similarly globally understood format) and the XMLHttpRequest
object. With the additional technologies thrown into the mix, we're able to harness the true power
of this programming technique, which involves being able to communicate with the Web server in
order to retrieve and even update data found or submitted through the existing Web page, without
having to reload the entire page!

By now you've seen the power of Ajax in action countless times using popular websites such as
Facebook, Gmail, and Yahoo!, so I don't think I need to belabor the advantages of this feature. At
the same time, it's doubtful an in-depth discussion regarding how all of these technologies work
together is even practical, particularly because it's possible to take advantage of them without having
to understand the gory details, much in the same way we can use many Zend Framework components
without being privy to the underlying mechanics.

Passing Messages Using JSON

Ajax-driven features are the product of interactions occurring between the client and server, which
immediately raises a question. If the client-side language is JavaScript and the server-side language is
PHP, how is data passed from one side to the other in a format both languages can understand? There
are actually several possible solutions, however JSON (JavaScript Object Notation) has emerged as
the most commonly used format.

Easy PHP Websites with the Zend Framework 176

JSON is an open standard used to format data which is subsequently serialized and transmitted over
a network. Unlike many XML dialects is actually quite readable, although of course it is ultimately
intended for consumption by programming languages. For instance, the following presents a JSON
snippet which represents an object describing a video game:

{
 "asin": "B002I0K780",
 "name": "LittleBigPlanet 2",
 "rel": "January 18, 2011",
 "price":"59.99"
}

Both jQuery and PHP offer easy ways to both write and read JSON, meaning you'll be able to pass
messages between the client and server without having to worry about the complexities of JSON
message formatting and parsing. You'll see how easy and frankly transparent it is to both construct
and parse these messages in the example that follows.

Validating Account Usernames

Any social networking website requires users to be uniquely identifiable, logically because users
need to be certain of their friends' identities before potentially sharing personal information.
GameNomad uses a pretty simplistic solution for ensuring users are uniquely identifiable, done by
requiring users to choose a unique username when creating a new account.

Such a constraint can be a source of frustration for users who complete the registration form only to
be greeted with an error indicating that the desired username has already been taken. On a popular
website it's entirely likely that a user could submit the form several times before happening to
choose an unused username, no doubt causing some frustration and possibly causing the user to give
up altogether. Many websites alleviate the frustration by providing users with real-time feedback
regarding whether the desired username is available, done by using Ajax to compare the provided
username with those already found in the database, and updating the page asynchronously with some
indication of whether the username is available.

In order to verify the availability of a provided username in real-time an event-handler must be
associated with the registration form's username field. The username field looks like this:

<input type="text" name="username" id="username" value="" size="35">

Because we want validation to occur the moment the user enters the desired username into this field,
a blur event is attached to the username field. The blur event handler will execute as soon as focus
is taken away from the associated DOM element. Therefore when the user completes the username
field and either tabs or moves the mouse to the next field, the handler will execute.

Easy PHP Websites with the Zend Framework 177

This handler is presented below, followed by some commentary:

01 $('#username').bind('blur', function (e) {
02
03 $.getJSON('/ws/username',
04 {username: $('#username').val()},
05 function(data) {
06 if (data == "TRUE") {
07 $("#available").text("This username is available!");
08 } else {
09 $("#available").text("This username is not available!");
10 }
11 }
12);
13
14 });

Let's review the code:

• Line 01 defines the handler, associating a blur handler with the DOM element identified by
username.

• Line 03 specifies that a GET request will be sent to /ws/username (The ws controller's username
action), and that JSON-formatted data is expected in return.

• Line 04 sends a GET parameter named username to /ws/username. This parameter is assigned
the value of whatever is found in the username field.

• Lines 05-11 define the anonymous function which executes when the response is returned to the
handler. If the response is TRUE, the username is available and the user will be notified accordingly
(by updating a DIV associated with the ID available). Otherwise, the username has already been
taken and the user will be warned.

Next let's examine the ws controller (ws is just a convenient abbreviation for web services) and the
username action used to verify the username's existence. This controller is presented next, followed
by some commentary:

01 <?php
02
03 class WsController extends Zend_Controller_Action
04 {
05
06 public function init()
07 {

Easy PHP Websites with the Zend Framework 178

08 $this->em = $this->_helper->EntityManager();
09 $this->_helper->layout()->disableLayout();
10 Zend_Controller_Front::getInstance()
11 ->setParam('noViewRenderer', true);
12 }
13
14 public function usernameAction()
15 {
16
17 // Retrieve the provided username
18 $username = $this->_request->getParam('username');
19
20 // Does an account associated with username already exist?
21 $account = $this->em->getRepository('Entities\Account')
22 ->findOneByUsername($username);
23
24 // If $account is null, the username is available
25 if (is_null($account))
26 {
27 echo json_encode("TRUE");
28 } else {
29 echo json_encode("FALSE");
30 }
31
32 }
33
34 }

Let's review the code:

• Lines 06-12 define the controller's init method. In this method we'll disable both the layout and
view renderer, because the controller should not render anything other than the returned JSON-
formatted data.

• Lines 14-32 define the username action. This is pretty standard stuff by this point in the book,
involving using Doctrine to determine whether the provided username already exists. If it doesn't,
TRUE is returned to the caller, otherwise FALSE is returned.

Keep in mind that you shouldn't rely solely upon JavaScript-based features for important validation
tasks such as verifying username availability; a malicious user could disable JavaScript and wreak
a bit of havoc by introducing duplicate usernames into the system. To be safe, you should also carry
out similar validation procedures on the server-side.

Easy PHP Websites with the Zend Framework 179

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Why should you link to the jQuery library via Google's content distribution network rather than
store a version locally?

• What role does jQuery's $.getJSON method play in creating the Ajax-driven feature discussed
earlier in this chapter?

Chapter 10. Integrating Web
Services
Data is the lifeblood of today's economy, with companies like Google, Microsoft, and Amazon.com
spending billions of dollars amassing, organizing, parsing, and analyzing astoundingly large sums
of information about their products, services, users, and the world at large. So it may seem
counterintuitive that all of the aforementioned companies and many others make this data available
for others for free.

By exposing this data through an application programming interface (API) known as a web service,
their goal is to provide savvy developers with a practical way to present this data to others.
Additional exposure will hopefully lead to increased interest in that company's offerings, with
increased revenues to follow. A great example of this strategy is evident in Amazon.com's Product
Advertising API. Via the Product Advertising API, Amazon exposes information about almost every
product in what is undoubtedly the largest shopping catalog on the planet, including the product
title, manufacturer, price, description, images, sales rank, and much more. You're free to use this
information to create new and interesting online services, provided you follow the API's terms of
service, which among other requirements demands that any product information retrieved from the
API is linked back to the product's primary Amazon product description page.

Other web services such as the Google Maps API and Twitter API, expose both data and useful
features which allow you to interact with the service itself. For instance, the Google Maps API
provides you with not only the ability to render a map centered over any pair of coordinates, but
also the opportunity to plot markers, routes, and create other interesting location-based services.
Likewise, the Twitter API not only gives you the ability to search the ever-growing mountain of
tweets, but also the ability to update your own account with new updates.

The Zend Framework offers a particularly powerful set of web services-related components which
connect to popular APIs including those offered by Amazon.com, eBay, Flickr, Google, Microsoft,
Twitter, Yahoo, and others. In this chapter I'll introduce you to Zend_Service_Amazon (the gateway
to the Product Advertising API), a Zend Framework component which figures prominently into
GameNomad, and also show you how easy it is to integrate the Google Maps API into your Zend
Framework application despite the current lack of a Zend Framework Google Maps API component.

Easy PHP Websites with the Zend Framework 181

Introducing Amazon.com's Product Advertising API

Having launched the Associates program back in 1996, before much of the world had even
heard of the Internet, Amazon.com founder Jeff Bezos and his colleagues clearly had a prescient
understanding of the power of hyperlinking. By providing motivated third-parties, known as
associates, with an easy way to promote Amazon products on their own websites and earn a
percentage of any sales occurring as a result of their efforts, Amazon figured they could continue to
grow market share in the fledgling e-commerce market. Some 13 years later, the Amazon Associates
program is an online juggernaut, with everybody from large corporations to occasional bloggers
using the program to enhance the bottom line.

With over a decade of experience under their belts, Amazon has had plenty of time and opportunity
to nurture their Associates program. Early on in the program's lifetime, associates' options were
limited to the creation of banners and other basic links, however over time the program capabilities
grew, with today's associates given a wealth of tools for linking to Amazon products using a variety
of links, banners, widgets, search engines. Users are also provided with powerful sales analysis tools
which help them gauge the efficacy of their efforts.

Along the way, Amazon.com unveiled the shining gem of the associates program: the Amazon
Product Advertising API (formerly known as the Amazon Associates Web Service). This service
made Amazon's enormous product catalog available via an API, giving developers the ability to
retrieve and manipulate this data in new and creative ways. Via this API developers have access to
all of the data they could conceivably need to build a fascinating new solution for perusing Amazon
products, including product titles, ASINs (Amazon's internal version of the UPC code, known as
the Amazon Standard Identification Number), product release dates, prices, manufacturer names,
Amazon sales ranks, customer and editorial reviews, product relations (products identified as being
similar to one another), images, and much more!

But before you can begin taking advantage of this fantastic service, you'll need an Amazon
customer account. I'll presume like the rest of the world you already have one but if not head
over to Amazon.com and create that now. Additionally, you'll probably want to create an Amazon
Associates account so you can potentially earn additional revenue when linking products back to
their Amazon.com product page.

Joining the Amazon Associates Program

Joining the Amazon Associates Program is free, and only requires you to complete a short
registration form in which you'll provide your payment and contact information, website name, URL
and description, in addition to declare agreement to the Amazon Associates operating agreement. To

Easy PHP Websites with the Zend Framework 182

register for the program, head over to https://affiliate-program.amazon.com/ and click on the Join
now for FREE! button to start the process.

You'll be prompted to provide information about the website you intend on using to advertise
Amazon products. After providing this information and agreeing to the Amazon Associates
Operating Agreement, a unique Associates ID will be generated. As you'll soon learn, you'll attach
this associate ID to the product URLs so Amazon knows to what account they should credit the
potential purchase. At this point you'll also be prompted to identify how you'd like to be paid, either
by direct deposit, check, or Amazon gift card.

Creating Your First Product Link

Although the point of this section is to introduce the Amazon Product Advertising API, it's worth
taking a moment to understand how to easily create Amazon product URLs which include your
affiliate ID. In order to be credited for any sales taking place as a result of using your affiliate links,
you'll need to properly include your Associate ID within the product link. When using Amazon's
automated wizards for creating product links (head over to https://affiliate-program.amazon.com/
to learn more about these) you'll find these links to be extremely long and decidedly not user-
friendly. However, they support a shortcut which allows you to create succinct alternative versions.
For instance, the following link will point users to Amazon's product detail page for the video game
Halo 3 for the Xbox 360, tying the link to GameNomad's affiliate account:

http://www.amazon.com/exec/obidos/ASIN/B000FRU0NU/gamenomad-20

As you can see, this link consists of just two pieces of dynamic information: the product's ASIN,
and the associate identifier. Don't believe it's this easy? Head on over to the Amazon Associates
Link Checker (http://goo.gl/jOmlP) and test it out. Enter the link into the form (you'll need to swap
out my Associate ID with your own), and press the Load Link button. The page will render within
an embedded frame, confirming you're linking to the appropriate product. Once rendered, click the
Check Link button to confirm the page is linked to your associate identifier.

Of course, you'll probably want to include much more than a mere few links. Using the Amazon
Product Advertising API, we can do this on a large scale. I'll devote the rest of this section to how
you can use the API to quickly amass a large product database.

Creating an Amazon Product Advertising API Account

To gain access to Amazon's database and begin building your catalog, you'll need to create an API
account. After completing the registration process you'll be provided with two access identifiers
which you'll use to sign into the API. To obtain an account, head over to http://aws.amazon.com/

Easy PHP Websites with the Zend Framework 183

associates/ and click the Sign Up Now button. You'll be asked to sign in to your existing Amazon.com
account, and provide contact information, your company name or website, and the website URL
where you'll be invoking the service. You'll also be asked to read and agree to the AWS Customer
Agreement. Please read this agreement carefully, because there are some stipulations which can most
definitely affect your ability to use this information within certain applications. Once done, Amazon
will confirm the creation of your account. Click on the Manage Your Account link to retrieve your
keys. From here click on the Access Identifiers link. You'll be presented with two identifiers,
your Access Key ID and your Secret Access Key. Copy these keys into your application.ini
file, along with your associate ID:

;------------------------
; Amazon
;------------------------
amazon.product_advertising.public.key = "12345678ABCDEFGHIJK"
amazon.product_advertising.public.private.key = "KJIHGFESECRET876"
amazon.product_advertising.country = "US"
amazon.associate_id = "gamenomad-20"

We'll use these keys to connect to Amazon using the Zend_Service_Amazon component, introduced
in the next step.

Retrieving a Single Video Game

Amazon.com has long used a custom product identification standard known as the Amazon Standard
Identification Number, or ASIN. These 10-digit alphanumerical strings uniquely identify every
product in the Amazon.com catalog. Of course, you need to know what the product's ASIN is in
order to perform such a query, so how do you find it? The easiest way is to either locate it within
the product's URL, or scroll down the product's page where it will be identified alongside other
information such as the current Amazon sales rank and manufacturer name. For instance, the ASIN
for Halo 3 on the Xbox 360 is B000FRU0NU. With that in hand, we can use the Zend_Services_Amazon
component to query Amazon. Use the following code snippet to retrieve the product details
associated with the ASIN B000FRU0NU:

01 $amazonPublicKey = Zend_Registry::get('config')
02 ->amazon->product_advertising->public->key;
03 $amazonPrivateKey = Zend_Registry::get('config')
04 ->amazon->product_advertising->private->key;
05
06 $amazonCountry = Zend_Registry::get('config')->amazon->country;
07
08 $amazon =
09 new Zend_Service_Amazon($amazonPublicKey, $amazonCountry, $amazonPrivateKey);
10

Easy PHP Websites with the Zend Framework 184

11 $item = $amazon->itemLookup('B000FRU0NU', array('ResponseGroup' => 'Medium'));
12
13 echo "Title: {$item->Title}
";
14 echo "Publisher: {$item->Manufacturer}
";
15 echo "Category: {$item->ProductGroup}";

Although I'd venture a guess this code is self-explanatory, let's nonetheless expand upon some of
its key points:

• Lines 01-06 retrieve the assigned Product Advertising API public and private keys, and the country
setting. I'm based in the United States and so have set this to "US", however if you were in
the United Kingdom you'd presumably want to use the product catalog associated with http://
www.amazon.co.uk and so you'll set your country code to UK. See the Product Advertising API
manual for a complete list of available codes.

• Lines 08-09 instantiates the Zend_Service_Amazon component class, readying it for subsequent
authentication and product retrieval.

• Line 11 searches the catalog for a product identified by the ASIN B000FRU0NU. As you'll see later
in this chapter, we can also perform open-ended searches using criteria such as product title and
manufacturer.

• Lines 13-15 output the returned product's title, manufacturer, and product group. You can think of
the product group as an organizational attribute, like a category. Amazon has many such product
groups, among them Books, Video Games, and Sporting Goods.

Executing this code returns the following output:

Title: Halo 3
Publisher: Microsoft
Category: Video Games

Setting the Response Group

To maximize efficiency both in terms of bandwidth usage and parsing of the returned object, Amazon
empowers you to specify the degree of product detail you'd like returned. When it comes to querying
for general product information, typically you'll choose from one of three levels:

• Small: The Small group (set by default) contains only the most fundamental product attributes,
including the ASIN, creator (author or manufacturer, for instance), manufacturer, product group
(book, video game, or sporting goods, for instance), title, and Amazon.com product URL.

Easy PHP Websites with the Zend Framework 185

• Medium: The Medium group contains everything found in the Small group, in addition to attributes
such as the product's current price, editorial review, current sales rank, the availability of this item
in terms of the number of new, used, collectible, and refurbished units made available through
Amazon.com, and links to the product images.

• Large: The Large group contains everything available to the Medium group, in addition to data
such as a list of similar products, the names of tracks if the product group is a CD, a list of product
accessories if relevant, and a list of available offers (useful if a product is commonly sold by
multiple vendors via Amazon.com). Hopefully it goes without saying that if you're interested in
retrieving just the product's fundamental attributes such as the title and price, you should be careful
to choose the more streamlined Medium group, as the amount of data retrieved when using the
Large group is significantly larger than that returned by the former.

If you're interested in retrieving only a specific set of attributes, such as the image URLs or customer
reviews, then consider using one of the many available specialized response groups. Among
these response groups include Images, SalesRank, CustomerReviews, and EditorialReview. As an
example, if you'd like to regularly keep tabs of solely a product's latest Amazon sales rank, there's
logically no need to retrieve anything more than the rank. To forego retrieving superfluous data, use
the SalesRank response group:

$item = $amazon->itemLookup('B000FRU0NU', array('ResponseGroup' => 'SalesRank'));
echo "The latest sales rank is: {$item->SalesRank}";

Tip

TIP. Determining which attributes are available to the various response groups can be a
tedious affair. To help sort out the details, consider downloading the documentation from
http://aws.amazon.com/associates/.

Displaying Product Images

Adding an image to your product listings can greatly improve the visual appeal of your site. If
your queries are configured to return a Medium or Large response group, URLs for three different
image sizes (available via the SmallImage, MediumImage, and LargeImage objects) are included in
the response. Unless you require something else only available within the Large response group, use
the Medium group in order to save bandwidth, as demonstrated here:

$item = $amazon->itemLookup('B000FRU0NU', array('ResponseGroup' => 'Medium'));
echo $this->view->item->SmallImage->Url;

Executing this code returns the following URL:

Easy PHP Websites with the Zend Framework 186

http://ecx.images-amazon.com/images/I/41MnjYDVLqL._SL75_.jpg

If you want to include the image within a view, pass the URL into an

tag:

<img src="<?= $this->item->SmallImage->Url; ?>" />

You might be tempted to save some bandwidth by retrieving and storing these images locally. I
suggest against doing so for two reasons. First and most importantly, caching the image is not
allowed according to the Product Advertising API's terms of service. Second, as the above example
indicates, the image filenames are created using a random string which will ensure the outdated
images aren't cached and subsequently used within a browser or proxy server should a new image
be made available by Amazon. The implication of the latter constraint is that the URLs shouldn't be
cached either, since they're subject to change. Of course, rather than repeatedly contact the Amazon
servers every time you want to display a URL, you should cache the image URLs, however should
only do so for 24 hours do to their volatile nature. The easiest way to deal with this issue is to create
a daily cron job which cycles through each item and updates the URL accordingly.

Putting it All Together

Believe it or not, by now you've learned enough to create a pretty informative product interface.
Let's recreate the layout shown in Figure 10.1, which makes up part of the GameNomad website.

Figure 10.1. Assembling a video game profile

Easy PHP Websites with the Zend Framework 187

Let's start by creating the action, which will contact the web service and retrieve the desired game.
Assume the URL is a custom route of the format http://www.gamenomad.com/games/B000FRU0NU.
This code contains nothing you haven't already encountered:

public function showAction()
{

 // Retrieve the ASIN
 $asin = $this->_request->getParam('asin');

 // Query AWS
 $amazonPublicKey = Zend_Registry::get('config')
 ->amazon->product_advertising->public->key;
 $amazonPrivateKey = Zend_Registry::get('config')
 ->amazon->product_advertising->private->key;

 $amazonCountry = Zend_Registry::get('config')->amazon->country;

 $amazon =
 new Zend_Service_Amazon($amazonPublicKey, $amazonCountry, $amazonPrivateKey);

 $this->view->item =
 $amazon->itemLookup('B000FRU0NU', array('ResponseGroup' => 'Medium'));

}

Once the query has been returned, all that's left to do is populate the data into the view, as is
demonstrated here:

<h1><?= $this->item->Title; ?></h1>
<img src="<?= $this->item->MediumImage->url; ?>" />
Publisher: <?= $this->item->Manufacturer; ?>

Release Date:
 <?= $this->ReleaseDate($this->item->ReleaseDate)); ?>

Amazon.com Price: <?= $this->item->FormattedPrice; ?>

Latest Amazon.com Sales Rank:
 <?= $this->SalesRank($this->item->SalesRank); ?>

Like the controller, we're really just connecting the dots regarding what's been learned here and in
other chapters. Perhaps the only worthy note is that a few custom view helpers are used in order to
format the publication date and sales rank. Within these view helpers native PHP functions such as
strtotime(), date() and number_format() are used in order to convert the returned values into
more desirable formats.

Of course, because GameNomad is a live website, the Product Advertising API isn't actually queried
every time a video game's profile page is retrieved. Much of this data is cached locally, and

Easy PHP Websites with the Zend Framework 188

regularly updated in accordance with the terms of service. Nonetheless, the above example nicely
demonstrates how to use the web service to pull this data together.

Searching for Products

All of the examples provided so far presume you have an ASIN handy. But manually navigating
the Amazon.com website to find them is a tedious process. In fact, you might not even know the
product's specific title, and instead just want to retrieve all products having a particular keyword in
the title, or made by a particular manufacturer.

Searching for Products by Title

What if you wanted to find products according to a particular keyword found in the product title? To
do so, you'll need to identify the product category, and then specify the keyword you'd like to use as
the basis for searching within that category. The following example demonstrates how to search the
VideoGames (note the lack of spaces) category for any product having the keyword Halo in its title:

$amazon =
 new Zend_Service_Amazon($amazonPublicKey, $amazonCountry, $amazonPrivateKey);

$items = $amazon->itemSearch(array('SearchIndex' => 'VideoGames',
 'ResponseGroup' => 'Medium', 'Keywords' => 'Halo'));

foreach($items as $item) {

 echo "{$item->Title}\n";

}

At the time of this writing (the Amazon.com catalog is of course subject to change at any time),
executing this code produced the following output:

Halo Reach
Halo: Combat Evolved
Halo 3: ODST
Halo, Books 1-3 (The Flood; First Strike; The Fall of Reach)
Halo 3
Halo 2
Halo: Combat Evolved
Halo Wars: Platinum Hits
Halo Reach - Legendary Edition
Halo 2

It's worth pointing out that the ten products found in the listing aren't all video games, as the defined
category might lead you to believe. For instance, the product Halo, Books 1-3 refers to a box set

Easy PHP Websites with the Zend Framework 189

of official novels associated with the Halo video game series. Why these sorts of inconsistencies
occur isn't apparent, although one would presume it has to do with making the product more easily
findable on the Amazon.com website and through other outlets.

Incidentally, VideoGames is just one of more than 40 categories at your disposal. Try doing
searches using categories such as Music, DigitalMusic, Watches, SportingGoods, Photo, and
OutdoorLiving for some idea of what's available!

Executing a Blended Search

If you were creating a website dedicated to the Halo video game series, chances are you'd want
to list much more than just the games! After all, there are Halo-specific books, soundtracks, toys,
action figures, and even an animated series. But not all of these items are necessarily categorized
within VideoGames, so how can you be sure to capture them all? Amazon offers a special "catch-
all" category called Blended which will result in a search being conducted within all of the available
categories:

$items = $amazon->itemSearch(array('SearchIndex' => 'Blended',
 'ResponseGroup' => 'Medium', 'Keywords' => 'Halo'));

Performing the search anew turns up almost 50 items with Halo in the title, the vast majority of
which are clearly related to the popular video game brand.

Executing Zend Framework Applications From the Command
Line

In order to calculate trends such as price fluctuations or sales popularity (via the Amazon.com sales
rank), you'll need to regularly retrieve and record this information. You already learned how to use
the Zend_Service_Amazon component to retrieve this information, but when doing the mass price
and sales rank updates using a standard action won't do for two reasons. First, as your game database
continues to grow, the time required to retrieve these values for each game will logically increase,
meaning you run the risk of surpassing PHP's maximum execution time setting (defined by the
max_execution_time directive). While you could certainly change this setting, the consequences of
the script still managing to surpass this limit due to an unexpectedly slow network connection or
other issue before all of the updates are complete are just too severe to contemplate.

The second reason to avoid performing this sort of update via a traditional action is because you
certainly don't want somebody from the outside either accidentally or maliciously accessing this
action. While you could password-protect the action, are you realistically going to take the time to

Easy PHP Websites with the Zend Framework 190

supply credentials each time you want to access the action in order to initiate the update? Certainly,
forgetting the password isn't going to help, and it's only a matter of time before you stop doing the
updates altogether.

One easy workaround involves writing a standalone script which is executed using PHP's command-
line interface (CLI). This eliminates the issues surrounding the maximum execution time setting
since this setting isn't taken into account when using the CLI. Additionally, provided proper file
permissions are applied you won't run the risk of another user running the script. However, you'll
need to deal with the hassle of finding and using a third-party Amazon API library, not to mention
violate the DRY principle by maintaining a separate set of Amazon API and database access
credentials. Or will you?

Believe it or not, it's possible to create a script which plugs directly into your Zend Framework
application! This script can take advantage of your application.ini file, all of the Zend
Framework's components, and any other resources you've made available to the application. This
approach gives you the best of both worlds: a script which can securely execute on a rigorous basis
(using a task scheduler such as cron) using the very same configuration data and other resources
made available to your web application.

Just as is the case with the web-based portion of your application, you'll need to bootstrap the Zend
Framework resources to the CLI script. You'll see that this script looks suspiciously like the front
controller (/public/index.php. Create a new file named cli.php and place it within your public
directory, adding the following contents:

<?php

defined('APPLICATION_PATH')
 || define('APPLICATION_PATH',
 realpath(dirname(__FILE__) . '/../application'));

// Define application environment
defined('APPLICATION_ENV')
 || define('APPLICATION_ENV',
 (getenv('APPLICATION_ENV') ? getenv('APPLICATION_ENV')
 : 'development'));

require_once 'Zend/Application.php';
$application = new Zend_Application(
 APPLICATION_ENV,
 APPLICATION_PATH . '/configs/application.ini'
);

$application->bootstrap();

Easy PHP Websites with the Zend Framework 191

As you can see, this script accomplishes many of the same goals set forth within the front controller,
beginning with defining the application path and application environment. Next we'll instantiate the
Zend_Application class, passing the environment and location of the application.ini. Finally, the
bootstrap() method is call, which loads all of the application resources.

With the CLI-specific bootstrapper in place, you can go about creating scripts which use your
application configuration files and other resources. For instance, I use the following script /scripts/
update_prices.php) to retrieve the latest prices for all of the video games found in the games table:

01 <?php
02
03 include "../public/cli.php";
04
05 // Retrieve the database connection handle
06 $db = $application->getBootstrap()->getResource('db');
07
08 // Retrieve the Amazon web service configuration data
09 $amazonPublicKey = Zend_Registry::get('config')
10 ->amazon->product_advertising->public->key;
11 $amazonPrivateKey = Zend_Registry::get('config')
12 ->amazon->product_advertising->private->key;
13 $amazonCountry = Zend_Registry::get('config')->amazon->country;
14
15 // Connect to the Amazon Web service
16 $amazon = new Zend_Service_Amazon($amazonPublicKey,
17 $amazonCountry, $amazonPrivateKey);
18
19 // Retrieve all of the games stored in the GameNomad database
20 $games = $db->fetchAll('SELECT id, asin, name FROM games ORDER BY id');
21
22 // Iterate over each game, updating its price
23 foreach ($games AS $game)
24 {
25
26 try {
27
28 $item = $amazon->itemLookup($game['asin'],
29 array('ResponseGroup' => 'Medium'));
30
31 if (! is_null($item)) {
32
33 if (isset($item->FormattedPrice))
34 {
35 $price = $item->FormattedPrice;
36 } else {
37 $price = '$0.00';
38 }

Easy PHP Websites with the Zend Framework 192

39
40 $update = $db->query("UPDATE games SET price = :price WHERE id = :id",
41 array('price' => $price, 'id' => $game['id']));
42
43 } else {
44
45 $update = $db->query("UPDATE games SET price = :price WHERE id = :id",
46 array('price' => '$0.00', 'id' => $game['id']));
47
48 }
49
50 } catch(Exception $e) {
51 echo "Could not find {$game['asin']} in Amazon database\r\n";
52 }
53
54 }
55
56 ?>

Let's review the code:

• Line 03 integrates the bootstrapper into the script, making all of the application resources available
for use. Incidentally, I happen to place my CLI scripts in the project's root directory within a
directory named scripts, thus the use of this particular relative path.

• Line 06 retrieves a handle to the database connection using this little known Zend Framework
feature (which I incidentally introduced in Chapter 6). We'll use this handle throughout the script
to execute queries against the GameNomad database.

• Lines 08-13 retrieve the Product Advertising API public and private keys, and the country setting.

• Line 16-17 instantiate the Zend_Service_Amazon class, passing in the aforementioned
configuration data.

• Line 20 uses the Zend_Db fetchAll() method to retrieve a list of all games found in the games
table.

• Lines 23-54 iterate over the list of retrieved games, using each ASIN to query the Amazon
web service and retrieve the latest price. Because the Amazon product database is occasionally
inconsistent, you need to carefully check the value before inserting it into the database, which
explains why in this example I am both ensuring the video game still exists in the database and
that the price is correctly set.

Easy PHP Websites with the Zend Framework 193

The ability to create CLI scripts which execute in this fashion is truly useful, negating the need to
depend upon additional third-party libraries and redundantly manage configuration data. Be sure to
check out the scripts directory in the GameNomad code download for several examples which are
regularly executed in order to keep the GameNomad data current.

Integrating the Google Maps API

Although web-based mapping services such as MapQuest (http://www.mapquest.com/) have been
around for years, it wasn't until Google's release of its namesake mapping API (Application
Programming Interface) that we began the love affair with location-based websites. This API
provides you with not only the ability to integrate Google Maps into your website, but also
to build completely new services built around Google's mapping technology. Google Maps-
driven websites such as http://www.walkjogrun.net/, http://www.housingmaps.com/, and http://
www.everyblock.com/ all offer glimpses into what's possible using this API and a healthy dose of
imagination.

Although the Zend Framework has long bundled a component named Zend_Gdata which provides
access to several Google services, including YouTube, Google Spreadsheets, and Google Calendar,
at the time of this writing a component capable of interacting with the Google Maps API was still not
available. However, it's nonetheless possible to create powerful mapping solutions using the Zend
Framework in conjunction with the Google Maps API and the jQuery JavaScript framework's Ajax
functionality. In this section I'll show you how this is accomplished. If you're new to the Google
Maps API take a moment to carefully read the primer which follows, otherwise feel free to skip
ahead to the section "Passing Data to the Google Maps API".

Introducing the Google Maps API

The 2005 release of the Google Maps API signaled a significant turning point in the Web's
evolution, with a powerful new breed of applications known as location-based services emerging
soon thereafter. This freely available API, which gives developers access to Google's massive
spatial database and an array of features which developers can use to display maps within
a website, plot markers, perform route calculations, and perform other tasks which were
previously unimaginable. While competing mapping solutions exist, notably the Bing Maps
(http://www.bing.com/developers) and Yahoo! Maps (http://developer.yahoo.com/maps/) APIs, the
Google Maps API seems to have struck a chord with developers and is at the time of this writing the
de facto mapping solution within the various programming communities.

In May, 2010 Google announced a major update to the API, commonly referred to as V3. V3
represents a significant evolutionary leap forward for the project, notably due to the streamlined

Easy PHP Websites with the Zend Framework 194

syntax which makes map creation and manipulation even easier than was possible using previous
releases. Additionally V3 introduces a number of powerful new features including the ability to
integrate draggable directions and the popular Street View feature.

However, one of the most welcome features new to V3 is the elimination of the previously required
domain-specific API key. Google had previously required developers to register for a key which
was tied to a specific domain address. While the registration process only took a moment, managing
multiple domain keys was somewhat of a hassle and so removal of this requirement was welcome
news.

Creating Your First Map

V3 offers a vastly streamlined API syntax, allowing you to create and manipulate a map using a few
short lines of code. Let's begin with a simple example which centers a map over the Columbus, Ohio
region. This map is presented in Figure 10.2.

Figure 10.2. Centering a Google map over Columbus, Ohio

Easy PHP Websites with the Zend Framework 195

The code used to create this map is presented next:

01 <html>
02 <head>
03 <script type="text/javascript"
04 src="http://maps.google.com/maps/api/js?sensor=false">
05 </script>
06 <style type="text/css">
07 #map { border: 1px solid black; width: 400px; height: 300px; }
08 </style>
09 <script type="text/javascript">
10 function initialize() {
11 var latlng = new google.maps.LatLng(39.984577, -83.018692);
12 var options = {
13 zoom: 12,
14 center: latlng,
15 mapTypeId: google.maps.MapTypeId.ROADMAP
16 };
17 var map = new google.maps.Map(document.getElementById("map"), options);
18 }
19 </script>
20 </head>
21 <body onload="initialize()">
22 <div id="map"></div>
23 </body>
24 </html>

Let's review this example's key lines:

• Lines 03-05 incorporate the Google Maps API into the web page. The API is JavaScript-based,
meaning you won't have to formally connect to the service like you did with the Amazon Product
Advertising API. Instead, you just add a reference to the JavaScript file, and use the JavaScript
methods and other syntax just as you would any other. Incidentally, the sensor parameter is used
to tell Google whether a sensor is being used to derive the user's coordinates. Why Google requires
this parameter is a mystery, since one would presume it could simply default to false. Nonetheless
be sure to include it as Google explicitly states it to be a requirement in the documentation.

• Line 07 defines a simple CSS style for the DIV which will hold the map contents. The dimensions
defined here will determine the size of the map viewport. If you were to omit dimensions, the map
will consume the entire browser viewport.

• Lines 10-18 define a function named initialize() which will execute once the page has
completely loaded (as specified by the onload() function call on line 21). You want to make sure
the page has completely loaded before attempting to render a map, because as you'll soon see

Easy PHP Websites with the Zend Framework 196

the API requires a target DIV in order to render the map. It's possible that the JavaScript could
execute before the DIV has been loaded into the browser, causing an error to occur. Keep this in
mind when creating your own maps, as this oversight is a common cause for confusion!

• Line 11 creates a new object of type LatLng, which represents a pair of coordinates. In this example
I'm passing in a set of coordinates which I know are situated atop the city of Columbus. In a later
section I'll show you how to derive these coordinates given an address.

• Lines 12-16 define an object literal which contains several map-specific settings such as the zoom
level, center point (defined by the previously created LatLng object), and the map type, which can
be set to ROADMAP, SATELLITE, HYBRID, or TERRAIN. The ROADMAP type is the default setting (the
same used when you go to http://maps.google.com). Try experimenting with each to get a feel
for the unique environment each has to offer. Other settings exist, however the three used in this
example are enough to create a basic map.

• Line 17 is responsible for creating the map based on the provided options, and inserting the map
contents into the DIV identified by the map ID. You're free to name the DIV anything you please,
however make sure the name matches that passed to the JavaScript getElementById() method
call.

• Finally, line 22 defines the DIV where the map will be rendered. This is obviously a simple
example; you can insert the DIV anywhere you please within the surrounding page contents. In
fact, it's even possible to render multiple maps on the same page using multiple instances of the
Map object.

Plotting Markers

The map presented in the previous example is interesting, however it provides the user little more
than a bird's eye view of the city. Staying with the video gaming theme of the book, let's plot a few
markers representing the locations of my favorite GameStop (http://www.gamestop.com) outlets, as
depicted in Figure 10.3.

Easy PHP Websites with the Zend Framework 197

Figure 10.3. Plotting area GameStop locations

In order to stay on topic I'll presume we've already obtained the coordinates for each of the three
locations placed on the map. In the next example I'll show you how to retrieve these coordinates so
in the meantime let's focus specifically on the syntax used to plot the markers. For the sake of space
I'll demonstrate plotting a single marker, however except for varying coordinates, marker titles, and
variable names the syntax is identical:

...
var map = new google.maps.Map(document.getElementById("map"), options);

var campus = new google.maps.Marker({
 position: new google.maps.LatLng(39.9952654, -83.0071351),
 map: map,
 title: "GameStop Campus"
});

Summarizing this snippet, to plot a marker you'll create a new object of type Marker and pass into
it an object literal consisting of the position, the map object, and the marker title (which displays
when the user mouses over the marker).

Easy PHP Websites with the Zend Framework 198

Using the Geocoder

All of the examples provided thus far are based on the unlikely presumption that you already know
the location coordinates. Because this is almost certainly never going to be the case, you'll need
a solution for converting, or geocoding the location address to its corresponding latitudinal and
longitudinal pair. The API is bundled with a geocoder which quite capably handles this task.

The API geocoder is bundled into a class named geocoder, and you'll invoke its geocoder() method
to convert an address into its constituent coordinates, with the results passed to an anonymous
function as demonstrated here:

01 ...
02 map = new google.maps.Map(document.getElementById("map"), options);
03
04 var address = "1611 N High St, Columbus Ohio";
05 var title = "Campus";
06
07 geocoder.geocode({'address': address}, function(results, status) {
08
09 if (status == google.maps.GeocoderStatus.OK) {
10
11 var marker = new google.maps.Marker({
12 position: results[0].geometry.location,
13 map: map,
14 title: title
15 });
16
17 } else {
18 return FALSE;
19 }
20
21 });
22 ...

If you're not familiar with JavaScript's anonymous function syntax, this snippet can look a bit
confusing. However if you carefully review this code you'll see that all we're doing is passing
in a nameless function and body along as the geocode() method's second input parameter. This
anonymous function accepts two parameters, results, which contains the geocoded coordinates if
the attempt was successful, and status, which is useful for determining whether the attempt was
successful. If successful, as defined by the status value google.maps.GeocoderStatus.OK, then the
results object can be retrieve the coordinates results[0].geometry.location is a LatLng object
containing the coordinates.

Easy PHP Websites with the Zend Framework 199

Of course, you shouldn't be repeatedly geocoding an address and plotting its coordinates. Instead,
you should geocode the address once and save the coordinates to the database. I'll show you how
this is done next.

Saving Geocoded Addresses

In my opinion, one of GameNomad's most interesting features is the ability to connect registered
users who reside within the same geographical region. This is possible because coordinates
corresponding to every user's zip code are associated with the user, and an algorithm is employed
which determines which other users reside within a specified radius from the user's home zip code.
These coordinates are stored in the accounts table's latitude and longitude columns, each of
which is defined using the double(10,6) data type. The geocoding occurs within two areas of the
GameNomad website, namely at the time of registration /account/register), and when the user
updates his account profile /account/profile).

The php-google-map-api library (http://code.google.com/p/php-google-map-api/) provides a
particularly easy way to convert addresses (including zip codes) into their corresponding coordinates.
The php-google-map-api library offers an object-oriented server-side solution for integrating Google
Maps into your website, allowing you to create and integrate maps using PHP rather than JavaScript.
Although the php-google-map-api library is a very capable solution, I prefer to use the native
JavaScript-based API however the php-google-map-api's geocoding feature is too convenient to
ignore, allowing you to pass in a zip code and retrieve the geocoded coordinates in return, as
demonstrated here:

$map = new GoogleMapAPI();
$coordinates = $map->getGeoCode($this->_request->getPost('zip_code'));

$latitude = $coordinates['lat'];
$longitude = $coordinates['lon'];

The php-google-map-api library is available for download from the aforementioned website, and
consists of just two PHP files, GoogleMap.php and JSMin.php. The former file contains the
GoogleMapAPI class which encapsulates the PHP-based interface to the Google Maps API. The
latter file contains a PHP implementation of Douglas Crockford's JavaScript minifier (http://
www.crockford.com/javascript/jsmin.html). If you're planning on using the library for more than
geocoding then I suggest also downloading JSMin.php as it will boost performance by compressing
the JavaScript generated by GoogleMap.php. Moving forward I'll presume you've only downloaded
GoogleMap.php for the purposes of this exercise.

Easy PHP Websites with the Zend Framework 200

Place GoogleMap.php within your project's library directory or any other directory made available
via PHP's include_path directive. Next you'll use the require_once statement to include the file at
the top of any controller which will use the geocoding feature:

require_once 'GoogleMap.php';

All that's left to do is invoke the GoogleMapAPI class and call the getGeoCode() method to convert
an address to its associated coordinates:

$map = new GoogleMapAPI();
$coordinates = $map->getGeoCode('43201');

$latitude = $coordinates['lat'];
$longitude = $coordinates['lon'];

printf("Latitude is %f and longitude is %f", $latitude, $longitude);

Executing this snippet produces the following output:

Latitude is 39.994879 and longitude is -82.998741

One great aspect of Google's geocoding feature is its ability to geocode addresses of varying degrees
of specificity. It can also geocode state names (Ohio), cities and states (Columbus, Ohio), specific
street names within an city (High Street, Columbus, Ohio), and specific street addresses (1611 N
High Street, Columbus, Ohio 43201), among other address variations.

Finding Users within a Specified Radius

Because every user's zip code coordinates are stored in the database, it's possible to create all sorts
of interesting location-based features, such as giving users the ability to review a list of all video
games for sale within a certain radius (5, 10, or 15 miles away from the user's location as defined
by his coordinates, for instance). Believe it or not, implementing such a feature is pretty easy,
accomplished by implementing a SQL-based version of the Haversine formula. Although staring at
the formula for too long may bring about unpleasant memories of high school geometry, the only real
implementational challenge is knowing the insertion order of the variables passed into the formula.

The rather long query presented below is a slightly simplified version of the SQL implementation of
the Haversine formula used on the GameNomad website. I won't pretend that I even really understand
the mathematics behind the formula (nor care to understand it, for that matter), other than to say that
it employs spherical trigonometry to calculate the distance between two points on the globe (or in the
case of the SQL query, the distance between a user's location and all of the other users in the system).

Easy PHP Websites with the Zend Framework 201

Speaking specifically about what this query will retrieve, all games having a status of $status and
associated with users residing within $distance miles of the location identified by the coordinates
$latitude and $longitude

SELECT a.zip_code, a.latitude, a.longitude, count(g.id) as game_count,
 (3959 * acos(cos(radians($this->latitude))
 * cos(radians(a.latitude)) *
 cos(radians(a.longitude) - radians($longitude)) +
 sin(radians($latitude)) *
 sin(radians(a.latitude)))) AS distance
 FROM accounts a
 LEFT JOIN games_to_accounts ga
 ON a.id = ga.account_id
 LEFT JOIN games g ON ga.game_id = g.id
 WHERE ga.status_id = $status
 GROUP BY a.zip_code HAVING distance < $distance
 ORDER BY distance

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Why is it a wise idea to use PHP's CLI in conjunction with scripts which could conceivably run
for a significant period of time?

• What two significant improvements does the Google Maps API offer over its predecessor?

Chapter 11. Unit Testing Your
Project
There are few tasks more exhausting than manually testing a website, haphazardly navigating from
one link to the next and repeatedly entering countless permutations of valid and invalid information
into web forms. Even thinking about these tasks is enough to wear me out. Yet leaving to chance a
potentially broken user registration or worse, product purchase form is a recipe for disaster.

And so goes on the clicking, the navigating, the form filling, the checking, the double checking, the
fixing, the triple checking, ad infinitum. Doesn't it seem ironic that programmers find themselves
mired in such a tedious and error-prone process? Thankfully, members of our particular community
tend to have little patience for inefficiency and often set out to improve inefficient processes through
automation.

In fact, a great deal of work has been put into automating the software testing process, and in fact
there are dozens of fantastic open source tools at your disposal which will not only dramatically
reduce the time and effort you'll otherwise spend laboriously surfing your website, but also
considerably reduce the amount of worry and stress you incur due to wondering whether you
overlooked something!

In this chapter I'll introduce you to a popular PHP testing tool called PHPUnit (http://
www.phpunit.de/) which integrates very well with the Zend Framework via the Zend_Test
component. Several of the preceding chapters concluded with sections titled "Testing Your Work"
which included several PHPUnit/Zend_Test-based tests intended to show you how to test your pages,
page elements, forms, Doctrine entities, and other crucial components. So rather than repetitively
focus on how to carry out these sorts of tests, I'll instead focus on configuration-related matters,
showing you how to put all of the pieces in place in order to begin taking advantage of the tests
presented in the earlier chapters.

Introducing Unit Testing

Unit testing is a software testing strategy which involves verifying that a specific portion, or unit of
code, is working as expected. For instance, , you might want to write unit tests which answer any
number of questions, including:

• Does the contact form properly validate user input?

Easy PHP Websites with the Zend Framework 203

• Is valid user registration data properly saved to the database?

• Are the finders defined in my custom entity repository retrieving the desired data?

• Does a particular page element exist?

Recognizing the importance of providing with an efficient way to integrate unit testing into the web
development process, the Zend Framework developers added a component called Zend_Test early
on in the project's history. Zend_Test integrates with the popular PHPUnit (http://www.phpunit.de)
unit testing framework, providing an effective and convenient solution for testing your Zend
Framework applications. In this section I'll show you how to install PHPUnit, and configure your
Zend Framework application so you can begin writing and executing unit tests which validate the
proper functioning of your website.

Readying Your Website for Unit Testing
The Zend Framework developers place a great emphasis on encouraging unit testing, going so far as
to automatically create a special directory named tests within the project directory which is intended
to house for your testing environment, and even generating test skeletons for each newly created
controller. Yet a few configuration steps remain before you can begin writing and executing your
unit tests. Thankfully, these steps are fairly straightforward, and in this section we'll work through
each in order to configure a proper testing environment.

Installing PHPUnit

PHPUnit is available as a PEAR package, requiring you to only tell your PEAR package manager
where the PHPUnit package resides by discovering its various PEAR channels, and then installing
the package:

%>pear channel-discover pear.phpunit.de
%>pear channel-discover components.ez.no
%>pear channel-discover pear.symfony-project.com
%>pear install phpunit/PHPUnit

Once installed, you're ready to begin using PHPUnit! Confirm it's properly installed by opening a
terminal window and viewing PHPUnit's version information:

%>phpunit --version
PHPUnit 3.5.3 by Sebastian Bergmann.

Next we'll configure your Zend Framework application so it can begin using PHPUnit for testing
purposes.

Easy PHP Websites with the Zend Framework 204

Configuring PHPUnit

To begin, create a configuration file named phpunit.xml which serves as PHPUnit's configuration
file, and place it in your project's tests directory. An empty phpunit.xml file already exists in this
directory, so all you need to do is add the necessary configuration directives. A very simple (but
operational) phpunit.xml files is presented here, followed by an overview of the key lines:

01 <phpunit bootstrap="./application/bootstrap.php" colors="true">
02 <testsuite name="gamenomad">
03 <directory>./</directory>
04 </testsuite>
05 </phpunit>

Let's review the file:

• Line 01 points PHPUnit to a bootstrap file, which will execute before any tests are run. I'll talk
more about tests/application/bootstrap.php in a moment. Setting the colors attribute to
true will cause PHPUnit to use color-based cues to indicate whether the tests had passed, with
green indicating success and red indicating failure.

• Lines 02-04 tells PHPUnit to recursively scan the current directory, finding files ending in
Test.php.

Next, we'll create the bootstrap file referenced on line 01 of the phpunit.xml file.

Creating the Test Bootstrap

The test bootstrap file (tests/application/bootstrap.php) referenced on line 01 of the
phpunit.xml file is responsible for initializing any resources which will subsequently be
used when running the tests. In the following example bootstrap file we configure a path-
related constant (APPLICATION_PATH), and load two helper classes (ControllerTestCase.php and
ModelTestCase.php) which we'll use to streamline some of the code used in controller- and
model-related tests, respectively (I'll talk more about these helper classes in a moment). Like the
phpunit.xml, a blank bootstrap.php file was created when your project was generated, so you'll
just need to add the necessary code:

<?php
 define('BASE_PATH', realpath(dirname(__FILE__) . '/../../'));

 define('APPLICATION_PATH', BASE_PATH . '/application');

 require_once 'controllers/ControllerTestCase.php';
 require_once 'models/ModelTestCase.php';

Easy PHP Websites with the Zend Framework 205

Testing Your Controllers

When you use the ZF CLI to generate a new controller, an empty test case will automatically be
created and placed in the tests/application/controllers directory. For instance if you create
a new controller named About, notice how the output also indicates that a controller test file
named AboutControllerTest.php has been created and added to the directory tests/application/
controllers/:

%>zf create controller About
Creating a controller at
/var/www/dev.gamenomad.com/application/controllers/...
Creating an index action method in controller About
Creating a view script for the index action method at
/var/www/dev.gamenomad.com/application.../about/index.phtml
Creating a controller test file at
/var/www/dev.gamenomad.com/tests/...AboutControllerTest.php
Updating project profile '/var/.../.zfproject.xml'

Let's take a look at the AboutControllerTest.php code:

<?php

 require_once 'PHPUnit/Framework/TestCase.php';

 class AboutControllerTest extends PHPUnit_Framework_TestCase
 {

 public function setUp()
 {
 /* Setup Routine */
 }

 public function tearDown()
 {
 /* Tear Down Routine */
 }

 }

Each generated controller test is organized within a class which extends the Zend Framework's
TestCase class. Within the class, you'll find two empty methods named setUp() and tearDown().
These methods are special to PHPUnit in that PHPUnit will execute the setUp() method prior to
executing any tests found in the class (I'll talk more about this in a moment), and will execute the
tearDown() method following completion of the tests. You'll use setUp() to set the application

Easy PHP Websites with the Zend Framework 206

environment up so that the tests will use to test the code, and tearDown() to return the environment
back to its original state.

When testing Zend Framework-driven applications, the primary purpose of the setUp() method is to
bootstrap your application environment so the tests can interact with the application code, it's a good
idea to DRY up the code and create a parent test case class which readies the environment for you.
You'll modify the generated test controller classes to extend this class, which will in turn subclass
Zend_Test_PHPUnit_ControllerTestCase. Here's what a basic parent test controller class looks
like, which I call ControllerTestCase.php (this file should be placed in the tests/application/
controllers directory):

<?php
 require_once 'Zend/Application.php';
 require_once 'Zend/Test/PHPUnit/ControllerTestCase.php';

 abstract class ControllerTestCase
 extends Zend_Test_PHPUnit_ControllerTestCase
 {

 public function setUp()
 {

 $this->bootstrap = new Zend_Application(
 'testing',
 APPLICATION_PATH . '/configs/application.ini'
);

 parent::setUp();

 }

 public function tearDown()
 {
 parent::tearDown();
 }

 }

Because we're keeping matters simple, this helper class' setUp() method is only responsible for
creating a Zend_Application instance, setting APPLICATION_ENV to testing and identifying the
location of the application.ini file, and concludes by executing the parent class' setUp() method.
The tearDown() method just calls the parent class' tearDown() method.

Easy PHP Websites with the Zend Framework 207

Save this file as ControllerTestCase.php to your /tests/application/controllers/ directory,
and modify the AboutControllerTest.php file so it extends this class. Also, add a simple test so
we can make sure everything is working properly:

<?php

 class AboutControllerTest extends ControllerTestCase
 {
 public function testDoesAboutIndexPageExist()
 {
 $this->dispatch('/');
 $this->assertController('about');
 $this->assertAction('index');

 }
 }

Save AboutControllerTest.php, open a terminal window, and execute the following command
from within your project's tests directory:

$ phpunit
PHPUnit 3.5.3 by Sebastian Bergmann.

..

Time: 0 seconds, Memory: 8.75Mb

OK (1 tests, 2 assertions)

Presuming you see the same output as that shown above, congratulations you've successfully
integrated PHPUnit into your Zend Framework application!

Executing a Single Controller Test Suite

Sometimes you'll want to focus on testing a specific controller and would rather not wait for all
of your tests to execute. To test just one controller, pass the controller path and test file name to
phpunit, as demonstrated here:

%>phpunit application/controllers/AccountControllerTest

Testing Your Models

While you'll want to test your models by way of your controller actions, it's also a good idea to test
your models in isolation. The configuration process really isn't much different from that used to test

Easy PHP Websites with the Zend Framework 208

the controllers, the only real difference being that in order to test the Doctrine entities we need to
obtain access to the entityManager resource. Create a helper class named ModelTestCase.php and
place it in the tests/application/models directory:

01 <?php
02
03 class ModelTestCase extends PHPUnit_Framework_TestCase
04 {
05
06 protected $em;
07
08 public function setUp()
09 {
10
11 $application = new Zend_Application(
12 'testing',
13 APPLICATION_PATH . '/configs/application.ini'
14);
15
16 $bootstrap = $application->bootstrap()->getBootstrap();
17
18 $this->em = $bootstrap->getResource('entityManager');
19
20 parent::setUp();
21
22 }
23
24 public function tearDown()
25 {
26 parent::tearDown();
27 }
28
29 }

Let's review the code:

• Line 06 defines a protected attribute named $em which will store an instance of the entity manager
(see Chapter 7 for more about the role of Doctrine's entity manager). This attribute will be used
within the tests to interact with the Doctrine entities.

• Lines 11-13 creates a Zend_Application instance, setting APPLICATION_ENV to testing and
identifying the location of the application.ini file.

• Line 16 retrieves an instance of the application bootstrap, which is in turn used to access the entity
manager resource (Line 18).

Easy PHP Websites with the Zend Framework 209

Save this file as ModelTestCase.php to your /tests/application/models/ directory, and create a
test class named AccountEntityTest.php, remembering to extend it with the ModelTestCase class.
Finally, add a simple test so we can make sure everything is working properly:

<?php

 class AboutEntityTest extends ModelTestCase
 {

 public function testCanSaveAndRetrieveUser()
 {

 $account = new \Entities\Account;
 $account->setUsername('wjgilmore-test');
 $account->setEmail('example@wjgilmore.com');
 $account->setPassword('jason');
 $account->setZip('43201');
 $account->setConfirmed(1);
 $this->em->persist($account);
 $this->em->flush();

 $account = $this->em->getRepository('Entities\Account')
 ->findOneByUsername('wjgilmore-test');

 $this->assertEquals('wjgilmore-test',
 $account->getUsername());

 }

 }

Creating Test Reports

Viewing the phpunit command's terminal-based output is certainly useful, however quite a few
other convenient and useful test reporting methods are also available. One of the simplest involves
creating an HTML-based report (see Figure 11.1) which clearly displays passing and failing tests.
The report is organized according to the test class, with failing tests clearly crossed out.

Easy PHP Websites with the Zend Framework 210

Figure 11.1. Viewing a web-based test report

To enable web-based test reports, modify your phpunit.xml file, adding the logging element as
presented below. You'll also need to create the directory where you would like to store the HTML
report (in the case of the below example you would create the directory tests/log/):

<programlisting>
<![CDATA[
<phpunit bootstrap="./application/bootstrap.php" colors="true">
 <testsuite name="gamenomad">
 <directory>./</directory>
 </testsuite>
 <logging>
 <log type="testdox-html"
 target="/var/www/dev.gamenomad.com/tests/log/testdox.html" />
 </logging>
</phpunit>
</programlisting>

Code Coverage

PHPUnit can also generate sophisticated code coverage reports which can prove extremely useful
for determining just how much of your project has been sufficiently tested. These web-based reports
allow you to drill down into your project files and visually determine specifically which lines,
methods, actions, and attributes have been "touched" by a test. For instance Figure 11.2 presents an
example code coverage report for an Doctrine entity named Account.

Easy PHP Websites with the Zend Framework 211

Figure 11.2. A Doctrine entity code coverage report

In order to enable PHPUnit's code coverage generation feature you'll need to install the Xdebug
extension (http://www.xdebug.org/). Installing Xdebug is a very easy process, done by following
the instructions presented here: http://www.xdebug.org/docs/install.

With Xdebug installed, you'll next need to define a log element of type coverage-html to your
project's phpunit.xml file, as demonstrated in the below example. You'll also need to create the
directory where you would like to store the code coverage reports (in the case of the below example
you would create the directory tests/log/report/):

<phpunit bootstrap="./application/bootstrap.php" colors="true">

 <testsuite name="gamenomad">
 <directory>./</directory>
 </testsuite>

 <filter>
 <whitelist>
 <directory suffix=".php">../application/</directory>
 <exclude>
 <file>../application/bootstrap.php</file>
 </exclude>

Easy PHP Websites with the Zend Framework 212

 </whitelist>
 </filter>

 <logging>
 <log type="testdox-html"
 target="tests/log/testdox.html" />
 <log type="coverage-html"
 target="tests/log/report" charset="UTF-8"
 yui="true" highlight="true"
 lowUpperBound="50"
 highLowerBound="80"/>
 </logging>
</phpunit>

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Define unit testing and talk about the advantages it brings to your development process.

• What Zend component and open source PHP project work in conjunction with one another to
bring unit testing to your Zend Framework applications?

• What is the name of the syntactical construct used to validate expected outcomes when doing
unit testing?

• Why are code coverage reports useful?

Chapter 12. Deploying Your
Website with Capistrano
I seriously doubt there is a developer on the planet who has not experienced at least one moment
of sheer panic due to at least one botched website deployment in their career. Those who admit to
having suffered through troubleshooting a sudden and mysterious issue with their production website
following an update almost always attribute the problem to FTP. Perhaps a configuration file was
mistakenly overwritten, you neglected to transfer all of the modified files, or you forgot to login to
the production server following completion of the file transfer and adjust file permissions.

You might be surprised to learn that under no circumstances should you be using FTP to update
anything but the simplest website. Unfortunately, FTP offers the illusion of efficiency, because
it provides such an incredibly intuitive interface for transferring files from your laptop to your
remote server. However, FTP is slow, transferring all selected files rather than only those which
have been modified since the last update. It is also stupid, capable of only transferring files without
any consideration of platform-specific settings (such as the APPLICATION_ENV setting in your Zend
Framework website's .htaccess file). And perhaps worst of all, FTP offers no undo option; once
the files have transferred, it is not possible to revert those changes should you want to return the
production website to its previous state.

Fortunately, an alternative deployment solution exists called Capistrano (https://github.com/
capistrano/) which resolves all of FTP's issues quite nicely. Not only can you use Capistrano to
securely and efficiently deploy changes to your Zend Framework website, but it's also possible to
rollback your changes should a problem arise. In this chapter I'll show you how to configure your
development environment to use Capistrano, freeing you from ever having to worry again about a
botched website deployment.

Configuring Your Environment

Capistrano is an open source automation tool originally written for and primarily used by the Rails
community (http://rubyonrails.org/). However it is perfectly suitable for use with other languages,
PHP included. But because Capistrano is written in Ruby, you'll need to install Ruby on your
development machine. If you're running OS X or most versions of Linux, then Ruby is likely already
installed. If you're running Windows, the easiest way to install Ruby is via the Ruby Installer for
Windows (http://rubyinstaller.org/).

Easy PHP Websites with the Zend Framework 214

Once installed, you'll use the RubyGems package manager to install Capistrano and another
application called Railsless Deploy which will hide many of the Rails-specific features otherwise
bundled into Capistrano. Although Railsless Deploy is not strictly necessary, installing it will
dramatically streamline the number of Capistrano menu options otherwise presented, all of which
would be useless to you anyway because they are intended for use in conjunction with Rails projects.

RubyGems is bundled with Ruby, meaning if you've installed Ruby then RubyGems is also available.
Open up a terminal window and execute the following command to install Capistrano:

$ gem install capistrano

Next, install Railsless Deploy using the following command:

$ gem install railsless-deploy

Once installed you should be able to display a list of available Capistrano commands:

$ cap -T
cap deploy # Deploys your project.
cap deploy:check # Test deployment dependencies.
cap deploy:cleanup # Clean up old releases.
cap deploy:cold # Deploys and starts a `cold' application.
cap deploy:pending # Displays the commits since your last...
cap deploy:pending:diff # Displays the `diff' since your last...
cap deploy:rollback # Rolls back to a previous version and...
cap deploy:rollback:code # Rolls back to the previously deployed...
cap deploy:setup # Prepares one or more servers for depl...
cap deploy:symlink # Updates the symlink to the most recen...
cap deploy:update # Copies your project and updates the s...
cap deploy:update_code # Copies your project to the remote ser...
cap deploy:upload # Copy files to the currently deployed...
cap invoke # Invoke a single command on the remote...
cap shell # Begin an interactive Capistrano sessi...

Installing a Version Control Solution

Version control is a process so central to successful software development that if you are not
currently using a version control solution such as Git (http://git-scm.com/) or Subversion (http://
subversion.tigris.org/) to manage your projects then consider reading the freely available chapter 1 of
the book "Pro Git" (http://progit.org/book/). In short, version control brings a great many advantages
to any project, including the disciplined evolution of your project's source code, changelog tracking
and publication, the ability to easily revert mistakes, and experiment with new features, to name a
few.

Easy PHP Websites with the Zend Framework 215

Further, maintaining a project under version control solution will greatly streamlines the deployment
process because Capistrano will be able to detect and transfer only those files which have changed
since the last deployment. While it's not strictly necessary for your project to be under version control
in order for Capistrano to perform the deployment, I urge you to do so because like Capistrano,
instituting version control will greatly reduce the possibility of unforeseen gaffes thanks to the ability
to rigorously track and traverse changes to your code.

Capistrano supports quite a few different version control solutions, among them Bazaar, CVS, Git,
Mercurial, and Subversion. If you haven't already settled upon a solution, I'd like to suggest Git
(http://git-scm.com/), not only because it happens to be the solution I know best and can therefore
answer any questions you happen to have, but also because as of the moment it is easily the most
popular version control solution on the planet. Additionally, Git clients are available for all of the
major platforms, Windows included. Install Git on your development machine by heading over to
http://git-scm.com/download and following the instructions specific to your operating system.

Once installed you can confirm that the command-line client is working properly by executing the
following command:

$ git --version
git version 1.6.3.3

Because Git associates repository changes with the user performing the commit, a useful feature
when working with multiple team members, you'll need to identify yourself and your e-mail address
so Git can attribute your commits accordingly:

$ git config --global user.name "Jason Gilmore"
$ git config --global user.email "wj@wjgilmore.com"

You'll only need to do this once, as Git will save this information in a configuration file associated
with your system account.

To place your project under version control, enter your project's root directory and execute the
following command:

$ git init
Initialized empty Git repository in /var/www/dev.gamenomad.com/.git/

Executing this command will in no way modify your project nor its files, other than to create a
directory called .git which will host your repository changes.

Presuming your project directory contains various files and directories, you'll next want to begin
tracking these files using Git. To do so, execute the add command:

Easy PHP Websites with the Zend Framework 216

$ git add .

The period tells Git's add command to recursively add everything found in the directory. You can
confirm which files will be tracked by executing the status command. For instance, if you're
tracking a project which was just created using the zf command-line tool, the status command will
produce the following output:

$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: .zfproject.xml
new file: application/Bootstrap.php
new file: application/configs/application.ini
new file: application/controllers/ErrorController.php
new file: application/controllers/IndexController.php
new file: application/views/scripts/error/error.phtml
new file: application/views/scripts/index/index.phtml
new file: docs/README.txt
new file: public/.htaccess
new file: public/index.php
new file: tests/application/bootstrap.php
new file: tests/library/bootstrap.php
new file: tests/phpunit.xml
#

Finally, you'll want to commit these changes. Do so using the commit command:

$ git commit -m "First project commit"
[master (root-commit) 5be0656] First project commit
 10 files changed, 303 insertions(+), 0 deletions(-)
 create mode 100644 .zfproject.xml
 create mode 100644 application/Bootstrap.php
 create mode 100644 application/configs/application.ini
 create mode 100644 application/controllers/ErrorController.php
 create mode 100644 application/controllers/IndexController.php
 create mode 100644 application/views/scripts/error/error.phtml
 create mode 100644 application/views/scripts/index/index.phtml
 create mode 100644 docs/README.txt
 create mode 100644 public/.htaccess
 create mode 100644 public/index.php
 create mode 100644 tests/application/bootstrap.php
 create mode 100644 tests/library/bootstrap.php

Easy PHP Websites with the Zend Framework 217

 create mode 100644 tests/phpunit.xml

The -m option refers to the commit message which you'll attach to the commit by passing it enclosed
in quotations as demonstrated here. Of course, you'll want these messages to clearly explain the
changes you're committing to the repository, not only for the benefit of others but for yourself when
you later review the commit log, which you can do by executing the log command:

$ git log
commit 5be06569a9d69214a629e888187e59023985f122
Author: Jason Gilmore <wj@wjgilmore.com>
Date: Wed Feb 23 18:37:48 2011 -0500

 First project commit

Because I'll show you how to use Capistrano to only deploy the changes committed to your repository
since the last deployment, you'll want to make sure you've committed your changes before beginning
the deployment process, otherwise you'll be left wondering why the production server doesn't reflect
your latest changes! This applies even if you aren't using Git, as the behavior is the same regardless
of which version control solution you are using.

This short introduction to Git doesn't even begin to serve as an adequate tutorial, as Git is a vastly
capable version control solution with hundreds of useful features. Although what you've learned so
far will be suffice to follow along with the rest of the chapter, I suggest purchasing a copy of Scott
Chacon's excellent book, "Pro Git", published by Apress in 2009. You can read the book online at
http://progit.org/.

Configuring Public-key Authentication

The final general configuration step you'll need to take is configuring key-based authentication. Key-
based authentication allows a client to securely connect to a remote server without requiring the
client to provide a password, by instead relying on public-key authentication to verify the client's
identity.

Public-key cryptography works by generating a pair of keys, one public and another private, and
then transferring a copy of the public key to the remote server. When the client attempts to connect
to the remote server, the server will challenge the client by asking the client to generate a unique
signature using the private key. This signature can only be verified by the public key, meaning the
server can use this technique to verify that the client is allowed to connect. As you might imagine,
some fairly heady mathematics are involved in this process, and I'm not even going to attempt an
explanation; the bottom line is that configuring public-key authentication is quite useful because it

Easy PHP Websites with the Zend Framework 218

means you don't have to be bothered with supplying a password every time you want to SSH into
a remote server.

Configuring public-key authentication is also important when setting up Capistrano to automate the
deployment process, because otherwise you'll have to configure Capistrano to provide a password
every time you want to deploy the latest changes to your website.

Configuring Public-key Authentication on Unix/Linux

If you're running a Linux/Unix-based system, creating a public key pair is a pretty simple process.
Although I won't be covering the configuration process for Windows or OSX-based systems, I
nonetheless suggest carefully reading this section as it likely won't stray too far from the steps you'll
need to follow. Start by executing the following command to generate your public and private key:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/wjgilmore/.ssh/id_rsa):

Unless you have good reasons for overriding the default key name and location, go ahead and accept
the default. Next you'll be greeted with the following prompt:

Enter passphrase (empty for no passphrase):

Some tutorials promote entering an empty passphrase (password), however I discourage this because
should your private key ever be stolen, the thief could use the private key to connect to any server
possessing your public key. Instead, you can have your cake and eat it to by defining a passphrase and
then using a service called ssh-agent to cache your passphrase, meaning you won't have to provide it
each time you login to the remote server. Therefore choose a passphrase which is difficult to guess
but one you won't forget.

Once you've defined and confirmed a passphrase, your public and private keys will be created. You'll
next want to securely copy your public key to the remote server. This is probably easiest done using
the scp utility:

$ scp ~/.ssh/id_rsa.pub username@remote:publickey.txt

You'll need to replace username and remote with the remote server's username and address,
respectively. Next SSH into the server and add the key to the authorized_keys file:

$ ssh username@remote
...
$ mkdir ~/.ssh
$ chmod 700 .ssh

Easy PHP Websites with the Zend Framework 219

$ cat publickey.txt >> ~/.ssh/authorized_keys
$ rm ~/publickey.txt
$ chmod 600 ~/.ssh/*

You should now be able to login to the remote server, however rather than provide your account
password you'll provide the passphrase defined when you created the key pair:

$ ssh username@remote
Enter passphrase for key '/home/wjgilmore/.ssh/id_rsa':

Of course, entering a passphrase each time you login defeats the purpose of using public-key
authentication to forego entering a password, doesn't it? Thankfully, you can securely store this
passphrase using a program called ssh-agent, which will store your passphrase and automatically
supply it when the client connects to the server. Cache your passphrase by executing the following
commands:

$ ssh-agent bash
$ ssh-add
Enter passphrase for /home/wjgilmore/.ssh/id_rsa:
Identity added: /home/wjgilmore/.ssh/id_rsa (home/wjgilmore/.ssh/id_rsa)

Try logging into your remote server again and this time you'll be whisked right to the remote terminal,
with no need to enter your passphrase! However, in order to forego having to manually start ssh-
agent every time your client boots you'll want to configure it so that it starts up automatically. If
you happen to be running Ubuntu, then ssh-agent is already configured to automatically start. This
may not be the case on other operating systems, however in my experience configuring ssh-agent
to automatically start is a very easy process. A quick search should turn up all of the information
you require.

Deploying Your Website

With these general configuration steps out of the way, it's time to ready your website for deployment.
You'll only need to carry out these steps once per project, all of which are thankfully quite
straightforward.

The first step involves creating a file called Capfile (no extension) which resides in your project's
home directory. The Capfile is essentially Capistrano's bootstrap, responsible for loading needed
resources and defining any custom deployment-related tasks. This file will also retrieve any project-
specific settings, such as the location of the project repository and the name of the remote server
which hosts the production website. I'll explain how to define these project-specific settings in a
moment.

Easy PHP Websites with the Zend Framework 220

Capistrano will by default look for the Capfile in the directory where the previously discussed cap
command is executed, and if not found will begin searching up the directory tree for the file. This
is because if you are using Capistrano to deploy multiple websites, then it will make sense to define
a single Capfile in your projects' root directory. Just to keep things simple, I suggest placing this
file in your project home directory for now. Also, because we're using the Railsless Deploy gem to
streamline Capistrano, our Capfile looks a tad different than those you'll find for the typical Rails
project:

require 'rubygems'
require 'railsless-deploy'
load 'config/deploy.rb'

Notice the third line of the Capfile refers to a file called deploy.rb which resides in a directory
named config. This file contains the aforementioned project-specific settings, including which
version control solution (if any) is used to manage the project, the remote server domain, and the
remote server directory to which the project will be deployed, among others. The deploy.rb file I
use to deploy my projects is presented next, followed by a line-by-line review:

01 # What is the name of the local application?
02 set :application, "gamenomad.wjgilmore.com"
03
04 # What user is connecting to the remote server?
05 set :user, "wjgilmore"
06
07 # Where is the local repository?
08 set :repository, "file:///var/www/dev.wjgames.com"
09
10 # What is the production server domain?
11 role :web, "gamenomad.wjgilmore.com"
12
13 # What remote directory hosts the production website?
14 set :deploy_to, "/home/wjgilmorecom/gamenomad.wjgilmore.com"
15
16 # Is sudo required to manipulate files on the remote server?
17 set :use_sudo, false
18
19 # What version control solution does the project use?
20 set :scm, :git
21 set :branch, 'master'
22
23 # How are the project files being transferred?
24 set :deploy_via, :copy
25
26 # Maintain a local repository cache. Speeds up the copy process.
27 set :copy_cache, true
28

Easy PHP Websites with the Zend Framework 221

29 # Ignore any local files?
30 set :copy_exclude, %w(.git)
31
32 # This task symlinks the proper .htaccess file to ensure the
33 # production server's APPLICATION_ENV var is set to production
34 task :create_symlinks, :roles => :web do
35 run "rm #{current_release}/public/.htaccess"
36 run "ln -s #{current_release}/production/.htaccess
37 #{current_release}/public/.htaccess"
38 end
39
40 # After deployment has successfully completed
41 # create the .htaccess symlink
42 after "deploy:finalize_update", :create_symlinks

Because the deploy.rb is almost certainly new to most readers, a line-by-line review follows:

• Line 02 assigns a name to the application. While this setting is not strictly necessary in all
deployment cases, this particular deployment file requires you to define this setting because of
the particular deployment approach used on Lines 24 and 27. I'll talk about this approach and why
this setting is needed in a moment.

• Line 05 defines the account name used to connect to the remote server. This user should logically
possess all of the rights necessary to copy and manipulate the project files on the remote server.

• Line 08 defines the location of the project repository. It's possible to define a remote repository
location, for instance pointing to a GitHub-hosted project, however because I'd imagine most
readers will want to deploy a project which is hosted locally, I thought it most beneficial to present
an example of the syntax used to point to a locally-hosted project.

• Line 11 defines the production server address. Capistrano will use this address when attempting
to connect to the remote server.

• Line 14 defines the deployment destination's absolute path.

• Line 17 defines whether sudo must be used by the connecting user in order to carry out the
deployment. If you don't know what sudo is, then chances are high this should be set to false.

• Line 20 defines the version control solution used to manage your project. Defining this setting
is necessary because it will determine how Capistrano goes about deploying the project. For
instance if :scm is set to :git then Capistrano will use Git's clone command to copy the project.
As mentioned earlier in this chapter Capistrano supports quite a few different version control
solutions. For instance, use :bzr for Bazaar, :cvs for CVS, :mercurial for Mercurial, and

Easy PHP Websites with the Zend Framework 222

:subversion for Subversion. If your project is currently not under version control, this can be
set to :none.

• Line 21 defines the repository branch you'd like to deploy. Repository branching is out of the
scope of this chapter, however if you are using version control and don't know what a branch is,
you can probably safely leave this set to master.

• Line 24 tells Capistrano how the files should be deployed to the remote server. The :copy strategy
will cause Capistrano to clone the repository, archive and compress the cloned repository using
the tar and gzip utilities, and then transfer the archive to the remote server using SFTP. An even
more efficient strategy is :remote_cache, which will cause Capistrano to deploy only the latest
commits rather than transfer the entire project. I suggest using :remote_cache if possible, however
I am using :copy in this example due to repeated issues I've encountered using :remote_cache.

• Line 27 enables the :copy_cache option, which will greatly speed the deployment process when
using the :copy strategy. Enabling this option will cause Capistrano to cache a copy of your
project (by default in the /tmp directory), storing the cache in a directory of the same name as the
:application setting. When set, at deployment time Capistrano will update this cache with the
latest changes before compressing and transferring it, rather than copy the entire repository.

• Line 30 tells Capistrano to ignore certain repository files and directories when deploying the
project. For instance, when using the :copy strategy the .git directory can be ignored because
there is no need for the remote server to have access to the project's repository history. Because
the .git directory can grow quite large over the course of time, excluding this directory from the
transfer process can save significant time and bandwidth.

• Lines 34-38 define a Capistrano task, which like a programmatic function defines a grouped
sequence of commands which can be executed using a named alias :create_symlinks). This task
is responsible for setting the Zend Framework project APPLICATION_ENV variable to production
by deleting the original .htaccess file found in the transferred project's public directory, and then
creating a symbolic link from the public directory which points to a production-specific version
of the .htaccess file residing in a directory called production. You'll of course need to create
this directory and production-specific .htaccess file, however the latter task is accomplished
simply by copying your existing .htaccess file to a newly created production directory and
then modifying this file so that APPLICATION_ENV is set to production rather than development.
It is this crucial step that will ensure your deployed Zend Framework application is using the
appropriate set of application.ini configuration parameters.

• The :create_symlinks task defined on lines 34-38 is just a definition; it won't execute
unless you tell it to do so. Execution happens on line 42, done by overriding Capistrano's

Easy PHP Websites with the Zend Framework 223

deploy:finalize_update task which will execute by default after the deployment process has
completed.

Whew, breaking down that deployment file was a pretty laborious task. However with deploy.rb
in place, you're ready to deploy your website!

Readying Your Remote Server

As I mentioned at the beginning of this chapter, one of the great aspects of Capistrano is the ability
to rollback your deployment to the previous version should something go wrong. This is possible
because (when using the copy strategy) Capistrano will store multiple versions of your website on
the remote server, and link to the latest version via a symbolic link named current which resides
in the the directory defined by the :deploy_to setting found in your deploy.rb file. These versions
are stored in a directory called releases, also located in the :deploy_to directory. Each version is
stored in a directory with a name reflecting the date and time at the time the release was deployed.
For instance, a deployment which occurred on February 24, 2011 at 12:37:27 Eastern will be stored
in a directory named 20110224183727 (these timestamps are stored using Greenwich Mean Time).

Additionally, Capistrano will create a directory called shared which also resides in the :deploy_to
directory. This directory is useful for storing custom user avatars, cache data, and anything else you
don't want overwritten when a new version of the website is deployed. You can then use Capistrano's
deploy:finalize_update task to create symbolic links just as was done with the .htaccess.

Therefore given my :deploy_to directory is set to /home/wjgilmore/gamenomad.wjgilmore.com,
the directory contents will look similar to this:

current -> /home/wjgilmore/gamenomad.wjgilmore.com/
releases/20110224184826
releases
 20110224181647/
 20110224183727/
 20110224184826/
shared

Note

If you start using Capistrano to deploy your Zend Framework projects, keep in mind that
you'll need to change your production website's document root to /path/to/current/
public!

Easy PHP Websites with the Zend Framework 224

Capistrano can create the releases and shared directories for you, something you'll want to do
when you're ready to deploy your website for the first time. Create these directories using the
deploy:setup command, as demonstrated here:

$ cap deploy:setup

Deploying Your Project

Now comes the fun part. To deploy your project, execute the following command:

$ cap deploy

If you've followed the instructions I've provided so far verbatim, remember that Capistrano will be
deploying your latest committed changes. Whether you've saved the files is irrelevant, as Capistrano
only cares about committed files.

Presuming everything is properly configured, the changes should be immediately available via
your production server. If something went wrong, Capistrano will complain in the fairly verbose
status messages which appear when you execute the deploy command. Notably you'll probably
see something about rolling back the changes made during the current deployment attempt, which
Capistrano will automatically do should it detect that something has gone wrong.

Rolling Back Your Project

One of Capistrano's greatest features is its ability to revert, or rollback, a deployment to the previous
version should you notice something just isn't working as you expected. This is possible because as I
mentioned earlier in the chapter, Capistrano stores multiple versions of the website on the production
server, meaning returning to an earlier version is as simple as removing the symbolic link to the
most recently deployed version and then creating a new symbolic link which points to the previous
version.

To rollback your website to the previously deployed version, just use the deploy:rollback
command:

$ cap deploy:rollback

Reviewing Commits Since Last Deploy

Particularly when you're making changes to a project which aren't outwardly obvious, it can be
easy to lose track of what commits have yet to be deployed. You can review this list using the

Easy PHP Websites with the Zend Framework 225

deploy:pending command, which will return a list of log messages and other commit-related
information associated with those commits made since the last successful deployment:

$ cap deploy:pending
 * executing `deploy:pending'
 * executing "cat /home/wjgilmorecom/gamenomad.wjgilmore.com
/current/REVISION"
 servers: ["gamenomad.wjgilmore.com"]
 [gamenomad.wjgilmore.com] executing command
 command finished
commit 0380f960af0db2b5d8cfb8893cb07caf038c9754
Author: Jason Gilmore <wj@wjgilmore.com>
Date: Thu Feb 24 11:32:28 2011 -0500

 Added special offer widget to the home page.

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
questions. You can find the answers in the back of the book.

• Provide a few reasons why a tool such as Capistrano is superior to FTP for project deployment
tasks.

• Describe in general terms what steps you'll need to take in order to ready your project for
deployment using Capistrano.

Conclusion

Every so often you'll encounter a utility which can immediately improve how you go about creating
and maintaining software. Capistrano is certainly one of those rare gems. Consider making your life
even easier by bundling Capistrano commands into a Phing (http://phing.info) build file, creating
a convenient command-line menu for carrying out repetitive tasks. I talk about this topic at great
length in the presentation "Automating Deployments with Phing, Capistrano and Liquibase". You
can download the presentation slides and a sample build file via my GitHub project page: http://
www.github.com/wjgilmore/.

Appendix A. Test Your
Knowledge Answers
This appendix contains the answers to the end-of-chapter questions located the section "Test Your
Knowledge".

Chapter 1

Identify and describe the three tiers which comprise the MVC architecture.

The MVC architecture consists of three tiers, including the model, view, and controller. The model is
responsible for managing the application's data and behavior. The view is responsible for rendering
the model in a format best-suited for the client interface, such as web page. The controller is
responsible for responding to user input and interacting with the model to complete the desired task.

How does the concept of "convention over configuration" reduce the number of development
decisions you need to make?

Convention over configuration is an approach to software design which attempts to reduce the
number of tedious implementational decisions a developer needs to make by assigning default
solutions to these decisions. How to best go about managing configuration data, validate forms data,
and structure page templates are all examples of decisions already made for you when using a web
framework which embraces this notion of convention over configuration.

Name two ways the Zend Framework helps you keep your code DRY.

Although the Zend Framework reduces code redundancy in a wide variety of ways, two ways
specifically mentioned in Chapter 1 include the ability to create and execute action helpers and view
helpers.

Chapter 2

What command-line tool is used to generate a Zend Framework project structure?

The command-line tool commonly used to generate a Zend Framework project and its constituent
parts is known as zf.

Easy PHP Websites with the Zend Framework 227

What file should you never remove from the project directory, because it will result in the
aforementioned tool not working properly?

The zf command-line tool uses a file named .zfproject.xml to keep track of the project structure.
Removing or modifying this file will almost certainly cause zf to behave erratically.

What is a virtual host and why does using virtual hosts make your job as a developer easier?

A virtual host is a convenient solution for serving multiple websites from one web server.
Using virtual hosts on your development machine is particularly convenient because you can
simultaneously work on multiple projects without having to reconfigure or restart the web server.

What two files are found in the public directory when a new project is generated? What are the
roles of these files? What other types of files should you place in this directory?

A Zend Framework project's public directory contains an .htaccess and index.php file. The
.htaccess file is responsible for rewriting all incoming requests to the index.php file, which serves
as the application's front controller. You'll also place CSS and JavaScript files in this directory, in
addition to your website images.

Chapter 3
The Zend Framework's convenient layout feature is not enabled by default. What ZF CLI command
should you use to enable this feature?

Execute the command zf enable layout to enable your project's layout file. This file is stored by
default in the directory application/layouts/scripts and is named layout.phtml.

From which directory does the Zend Framework expect to find your website CSS, images, and
JavaScript?

The CSS, images, and JavaScript files should be placed in the public directory.

What is the name of the Zend Framework feature which can help to reduce the amount of PHP code
otherwise found in your website views?

View helpers are useful for not only reducing the amount of PHP code found in a view, but also
for helping to DRY up your code by abstracting layout-related logic which might be reused within
multiple areas of your website.

Which Zend Framework class must you extend in order to create a custom view helper? Where
should your custom view helpers be stored?

Easy PHP Websites with the Zend Framework 228

Custom view helpers should extend the Zend_View_Helper_Abstract class. They should be placed
in the project's application/views/helpers directory.

Name two reasons why the Zend Framework's URL view helper is preferable over manually creating
hyperlinks?

The native URL view helper is convenient because it can dynamically adapt the URL in accordance
with any changes made to the website structure. Additionally, URL helpers can refer to a custom
route definition rather than explicitly naming a controller or action.

Chapter 4

Which Zend Framework component is primarily responsible for simplifying the accessibility of
project configuration data from a central location?

The Zend_Config component is the primary vehicle used for accessing a Zend Framework project's
configuration data.

What is the name and location of the default configuration file used to store the configuration data?

Although it's possible to store a Zend Framework project's configuration data using a variety of
formats, the default solution involves using an INI-formatted file named application.ini stored
in the directory application/configs.

Describe how the configuration data organized such that it is possible to define stage-specific
parameters.

The application.ini file is broken into multiple sections, with each section representative of a
lifecycle stage. These sections are identified by the headers [production], [staging:production],
[testing:production], and [development:production]. The latter three stages inherit from the
production stage, as is indicative by the syntax used to denote the section start.

What is the easiest way to change your application's lifecycle stage setting?

Although the Zend Framework's APPLICATION_ENV can be set in a variety of ways, the most common
approach involves setting it in the .htaccess file.

Chapter 5

Name two reasons why the Zend_Form component is preferable to creating and processing forms
manually.

Easy PHP Websites with the Zend Framework 229

Although one could cite dozens of reasons why the Zend_Form component is preferable to creating
and processing forms manually, two particularly prominent reasons include the ability to encapsulate
a form's components and behavior within a model, and the ease in which form fields can be validated
and repopulated.

How does the Flash Messenger feature streamline a user's website interaction?

The Flash Messenger is useful because the developer can create a message which should be presented
to the user following the completion of a specific task, such as successfully registering or logging in,
and then present this message on a subsequent page, thereby streamlining the number of interactions
a user needs to make in order to navigate the website.

What is the role of PHPUnit's data provider feature?

PHPUnit's data provider feature is useful for vetting various facets of a particular website feature by
repeatedly executing a test and passing in a different set of test data with each iteration.

Chapter 6
Define object-relational mapping (ORM) and talk about why its an advantageous approach to
programmatically interacting with a database.

Object-relational mapping provides a solution for interacting with a database in an object-oriented
fashion, thereby reducing and possibly entirely eliminating the need to inconveniently mingle
incompatible data structures.

Given a model named Application_Model_DbTable_Game, what will Zend_Db assume to be the
name of the associated database table? How can you override this default assumption?

Given a model named Application_Model_DbTable_Game, the Zend_Db component will assume the
associated database table is named game. You can override this assumption by defining a protected
property named name in your model.

What are the names and purposes of the native Zend_Db methods used to navigate model
associations?

The findParentRow() method is used by a child to retrieve information about its parent row. The
findDependentRowset() method is used by a parent to retrieve information about its children rows.

Chapter 7
Talk about the advantages Doctrine provides to developers.

Easy PHP Websites with the Zend Framework 230

Doctrine offers quite a few powerful advantages, including notably a mature object-relational
mapper, a database abstraction layer, and a powerful command-line tool. Its possible to identify
standard PHP classes as persistent through a simple configuration process, thereby greatly reducing
the amount of code a developer would otherwise have to write to implement persistence features.

Talk about the different formats Doctrine supports for creating persistent objects.

Doctrine can marry PHP objects and the underlying database using DocBlock annotations, XML, and
YAML. DocBlock annotations are the author's preferred approach, although any of the three will work
just fine.

What are DocBlock annotations?

DocBlock annotations allow developers to define a standard PHP class as persistent by embedding
metadata within PHP comment blocks. These annotations are used to define the mapping between
a class' properties and the associated SQL type, specify primary keys, and define associations.

What is DQL and why is it useful?

The Doctrine Query Language (DQL) is a query language useful for querying and interacting with
your project's object model. DQL is useful because it allows the developer to mine data which
continuing to think in terms of objects rather than in SQL.

What is QueryBuilder and why is it useful?

The QueryBuilder is an API which provides developers with a means for rigorously constructing
a DQL query.

Why is it a good idea to create a custom repository should your query requirements exceed the
capabilities provided by Doctrine's magic finders?

Custom repositories provide a convenient way to encapsulate your custom data-access features in a
specific location rather than polluting the domain entities.

Chapter 8

Explain how Zend_Auth knows which table and columns should be used when authenticating a user
against a database.

The Zend_Auth component includes an adapter named Zend_Auth_Adapter_DbTable which
supports methods used to map the adapter to a specific database table, and identify the table

Easy PHP Websites with the Zend Framework 231

columns used store the account username and password. These methods include setTableName(),
setIdentityColumn(), and setCredentialColumn(), respectively.

At a minimum, what are the five features you'll need to implement in order to offer basic user account
management capabilities?

The five fundamental account management features include account registration, account login,
account logout, password update, and password recovery.

Talk about the important role played by the account table's recovery column within several features
described within this chapter.

The account table's recovery column is used for unique identifiers which serve to create a one-time
URL. A one-time URL is sent to a newly registered user's e-mail address. When clicked, the unique
identifier will be compared against the database in order to confirm the account.

Chapter 9

Why should you link to the jQuery library via Google's content distribution network rather than
store a version locally?

Linking to the jQuery library via Google's content distribution network will greatly increase the
likelihood that the library is already cached within a user's browser, thereby reducing the amount of
bandwidth required to serve your website.

What role does jQuery's $.getJSON method play in creating the Ajax-driven feature discussed earlier
in this chapter?

The $.getJSON method is useful for asynchronously communicating with a remote endpoint via an
HTTP GET request.

Chapter 10

Why is it a wise idea to use PHP's CLI in conjunction with scripts which could conceivably run for
a significant period of time?

When using PHP scripts to execute batch processes, using the command-line interface (CLI) is a wise
idea because CLI-based PHP scripts do not take PHP's max_execution_time setting into account.
Additionally, CLI-based scripts can be automatically executed using a scheduling daemon such as
CRON.

Easy PHP Websites with the Zend Framework 232

What two significant improvements does the Google Maps API V3 offer over its predecessor?

The Google Maps API V3 offers several improvements over its predecessor, however two of the
most notable changes include the removal of the API key requirement and the streamlined syntax
which greatly reduces the amount of code otherwise required to implement key features such as map
customization and marker display.

Chapter 11

Define unit testing and talk about the advantages it brings to your development process.

Unit testing provides developers with a tool for formally and rigorously determining whether specific
parts of an application's source code behave as expected. Using an automated unit testing tool is
advantageous because a suite of tests can be created, managed and organized in an efficient manner.

What Zend component and open source PHP project work in conjunction with one another to bring
unit testing to your Zend Framework applications?

PHPUnit and the Zend Framework's Zend_Test component work together to bring unit testing
features to your Zend Framework projects.

What is the name of the syntactical construct used to validate expected outcomes when doing unit
testing?

Expected outcomes are confirmed using assertions.

Why are code coverage reports useful?

Code coverage reports are useful because they provide developers with a valuable tool for
determining how many lines of a project have been "touched" by unit tests.

Chapter 12

Provide a few reasons why a tool such as Capistrano is superior to FTP for project deployment tasks.

Capistrano is superior to FTP because Capistrano is faster, more secure, and able to automatically
revert a website to its last known good state should a problem occur during the deployment process.
Additionally, the developer can manually revert a website to its previous state should he detect a
problem following deployment.

Easy PHP Websites with the Zend Framework 233

Describe in general terms what steps you'll need to take in order to ready your project for deployment
using Capistrano.

After installing Capistrano (and optionally Railsless-deploy), and configuring shared-key
authentication, you'll want to create a Capfile and a deployment file (which contains the project's
deployment configuration settings). Before deploying your project you'll want to ready the
deployment server by executing Capistrano's deploy:setup command. Finally, when ready to
deploy you'll execute the deploy command.

	Cover
	Table of Contents
	Introduction
	Chapter 1. IntroducingFramework-Driven Development
	Chapter 2. Creating Your FirstZend Framework Project
	Chapter 3. Managing Layouts,Views, CSS, Images andJavaScript
	Chapter 4. ManagingConfiguration Data
	Chapter 5. Creating Web Formswith Zend_Form
	Chapter 6. Talking to theDatabase with Zend_Db
	Chapter 7. Chapter 7. IntegratingDoctrine 2
	Chapter 8. Managing UserAccounts
	Chapter 9. Creating Rich UserInterfaces with JavaScript andAjax
	Chapter 10. Integrating WebServices
	Chapter 11. Unit Testing YourProject
	Chapter 12. Deploying YourWebsite with Capistrano
	Appendix A. Test YourKnowledge Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11&12

