wjgilmore.com

EASY
PHP WEBSITES WITH
THE ZEND FRAMEWORK

f

Easy PHP Websites with
the Zend Framework

W. Jason Gilmore

Easy PHP Websites with the Zend Framework

Easy PHP Websites with the Zend Framework

W. Jason Gilmore
Copyright © 2011 W. Jason Gilmore

Acknowledgements

Whew. Although | recently celebrated the tenth anniversary of the publication of my first book,
and have somehow managed to pen six more since, this process really isn't any easier than when
I put my very first words to paper back in 2000. Writing anything, let alone books about fast
moving technology, is a difficult, tedious, and often frustrating process. Y et paradoxically writing
this particular book has also adeeply gratifying experience, particularly becauseit's amajor update
to the very first book published through my namesake company W.J. Gilmore, LLC back in early
2009. In the years since I've had the pleasure of communicating directly with thousands of readers
around the globe, and although the self-publishing process has been occasionally arocky road, the
experience has been nothing short of extraordinary.

This particular project has been adifficult one, notably becauseit's actually comprised of two major
projects, including the book and the companion GameNomad project. Throughout, |'ve been very
keen on trying to do thingsthe right way, both in my writing and the process used to devel op aproper
Zend Framework website complete with an emphasis on models, testing, and other best practices
such as deployment.

In terms of acknowledgements, 1'd like to make special mention of the people and teams who have
(most of them unknowingly) had a major influence on this book. Thanks to project lead Matthew
Weier O'Phinney and the rest of the Zend Framework team for putting together a truly fantastic
web framework solution. Sebastian Bergmann for hiswork on PHPUnit, and EdgeCase co-founder
and friend Joe O'Brien for his steadfast advocacy of test-driven development. Andreas Aderhold,
Michiel Rook, and the rest of the Phing team. Martin Fowler for his amazing book "Patterns of
Enterprise Application Architecture". The entire Doctrine team for what is easily one of the coolest
PHP technol ogies on the planet. Capistrano creator Jamis Buck. The GitHub crew. Bob Stayton for
his amazing patience and boundless Docbook knowledge. This list could literally go on for pages,
as the number of great programmers who have influenced my thinking particularly in recent years
seemsinfinite.

Last but certainly not least, I'd also like to thank you dear readers, each and every one of you mean
more to me than you'll ever know.

Jason Gilmore
Columbus, Ohio
March 8, 2011
wj@wjgilmore.com

Table of Contents

| LR [Voi i o g R TP PP UPPPPTRUPPINt X
e int What 1t IO BE X
00K CONEENES ..o X
Chapter 1. Introducing Framework-Driven Developmentcooooviiiiinnnn, Xl
apter 2. Creating Your First Zend Framework Project ..o, Xi
Chapter 3. Managing Layouts, Views, CSS, Images, and JavaScriptc.oceeveee il
Chapter 4. Managing Configuration Dataccovveiiiiiiiiiiiiniic e, Xl
Chapter 5. Creating Web FOrms With Zend_FOrmccouuiieiiiiinieiiiiiieeeeii e Xi
Chapter 6. Talking to the Database With Zend_ DDcooeviiiiiiiiiiiiiiecieeeeeiee Xii
Chapter 7. TNtegraling DOCIINE 2ccouviieiiiiii et Xii
Chapter 8. Managing User ACCOUNTScc.iviuiiiiiiiiiiiicc e Xii
Chapter 9. Creating Rich User Interfaces with JavaScript and AjaXccceeveneeen. Xii
Chapter 10. Integrafing Web SErviCeSooevviiiiiiiiii e, i
Chapter 11. Unit Testing Your Zend Framework AppliCationcccocvviuiennnneenn. i
Chapter 12. Deploying Y our Website with Capistranocooveeiiiiiiiiiniinninnn. i
Reader EXPECIALIONS ... eeiiiieeieii ettt i
About the Companion ProjJectocoiiiiiiiii Xiv
ADOUL The AUTNOT ...ttt et e e e Xiv
CoNtact The AUINONuiereii e e e e Xiv
1. Tntroducing Framework-Driven Developmentcooooiiiiiiiiiii e, 15
Introducing the Web Application Frameworkc.ccoviiiiiiiii e, 15
Frameworks Support the Development of Dynamic Websites..............cooeveiiiiiinennenn. 16
Frameworks Alleviate Overhead Associated with Common Activities......................... 19
Frameworks Provide a Variety of Librariesooooiiiii, 21
TEST Y OUr KNOWIEATEceevtieeeeii ettt ettt et e et e e e e eneans 23
2. Creating Your First Zend Framework ProJECTocuvvunieiiiiiiieeiiiie e 24
Downloading and Installing the Zend Framework ..., R4
Configuring The ZF TOOTiiiiiiie e 25
Creating Your First Zend Framework PrOJECTccouuuuieiiiiiieeiiiiie e g
Adjust Your Document ROOTcoouiiiiiiii 126
Navigate to the Project HOme Page ..o, 29
TREPIOJECT SITUCTUIE ...ttt ettt e et e e et e e e e eees 30
Extending Your Project with Controllers, Actions, and VIewsccccovviviiiiiiininnn. 31
Creating CoNtrollers ... B2
CrEAHNG ACHOMNSuueiiiiie ettt ettt et e et e et e e e eab e e e ena e eenens B3

(O =7 T BV AT S PP PP B3

Easy PHP Websites with the Zend Framework i

Passing Dalato the VIGWcuuueiiiii e et e e 34
Retrieving GET and POST Pal@meEersSoovviviieeiiiiieeiiiieeeeei e e e e e e B34
Retrieving GET Par@MeLErScuuiiiiiiiiieiiiii ettt e et e e e e eaae e 35
Retrieving POST PalaMeterSc.uuiiiiiiieeiiiiie e e e e e e e et e e e 36
Creating CUSIOM ROUEEScoivuiieiiii ettt e et e e et e e et e e e e eae s 36
DefiNING URL PalaMELErSoiiieiiieiiiii ettt e et e et e e e 38
ESHNG YOUI WOTK ...ttt ettt et et e e e et e e et e e e e e e e e e e e e aeeneees 39
Veritying Controller EXISIEBNCEuvviiiiiiiieii et 40
Verifying ACHON EXISIENCE ... cuviiiniiiiii e enes 40
Verifying a ReSponsSe StaUS COUBuuvveiiiiiieeiiiii e A1
IS A A U T (011 1= [0 T= ST SPPPR 41
3. Managing Layouts, Views, CSS, Tmages and JaVaSCriptccovevuieeeiiinieriiiinieeeeiinneaens rid
Managing Your WeDSITE LayOULc.ovuviuiiiiiiiiiiiiineni et e e e e e e nans éaz
USINg ATTEM@aiVE LaYOULSivieiiiiee e e e e e e e e 44
DiSalIiNG TNE LAYOULvuiiiiiiie e e e e e e e e et e aneaeen 45
ANAGING VIBWS ...eeieieet ettt et e et e e e e et e et e et e en e e e et e et e e en e enaennaernnes A5
Overriding the Defaull ACTHON VIBWvuiiiiiiii e @5
Disabling TNE VIBW ... c.uiiiiiiiii ettt et e eenas 46
iew L PP A6
ANAGING URLS ...ttt e e e e e e e e e e e e e e e e ennes A6
Creating Custom VIew HEIPEISviiiiiii e A8
MaANAGING TMBOESvuitii it e e e e et et et r et et r e e eanees b1
Managing CSS and JAVASCIIPEcevvriieiiiiie et e e b1
ESHNG YOUI WOTK ...eeciieiteite ettt ettt et e e e e e et e e e e e e e e e e e e e e eneees 51
Verifying FOMM EXISIENCEoveviiieiiiii ettt e e e e e e e e e eaeen 52
Verifying TN Page TITIE .. .oeeee i e 52
Testing a PartialLoop VIewW HEPENc.iiiiiiiie e b3
IS A A U T N0 1] 1= [0 T= S SPPPR 53
4. Managing ConfigUIralion Dafaocuivuniiiiiniiieiniieinine et e e a e aas b5
Introducing the Application Configurafion FITe ..o 55
Setting the Application Life CyCle STagevvvivvviniiiiiii e 57
Accessing Configuration ParamMeLersSccuieuiieieeeeieeiee e e e e e 57
Accessing Configuration Data From a Controller ACHONccovvvviviiiiiiiiiieieene, 57
Using the Controller'sinit() Method to Consolidaie Codeovevveviiereiiinnenennnn. 58
Accessing Configuration Parameters Globally Using Zend RegiSIryccocevveenennnee. 53
IS O S0 1= (o= PSP 59
5. Creating Web FOrms With Zend FOMMvoiiiiiiiciiie e 60

Creating a Form With Zend FOMMoooviviiiiiie e 60

Easy PHP Websites with the Zend Framework

ReNering tNE FOMTT ..oevei i e e e e e s 63
Passing OptionS 10 The CONSITUCTOTceuuiieiiii e 66
Processing FOrM CONENESuuuiiiiiiieeeiii e et e e e 66
Determining if the Form Has Been Submittedccoovvvviiieiiiiiiiiiiiccc e 67
Validating FOrM TNPULvuei e e e e aae e 68
COMPIEING TNE PTOCESS .. .uiiviiiiiiiit ittt et et e e e aas 74
POPUIAIING 8 O L.ttt et e e et e e e et s e e e eatn s e e e eatn s eeaeaenaeeees 77
POPUIAIING SEIECE BOXES ...eeevtiieieeiiii ettt ettt sttt e e et e e et e et e e e e et e e e e ean s 78
ESIING YOUN WOTK ...t et e e e e e e en 79
Making Sure the Contact FOM EXISISvvvvuiiiiiiiieiiiiie e 79
Testing TNVAITA FOM VAIUBScoeviiieiiie e e e 79
Testing Valid FOrM VAIUBSooveeiiieiiii ettt e e B2
IS A A U T (011 1= [0 T= ST SPPPR 83
6. Talking to the Database With Zend DDoviiiviiiiiiiiiii e 84
Introducing Object-Relalional MaPPINGc..ueetuierueerieteieeeiaeetae et e eeiaeeee e eaaeeeennas 86
INErOdUCING ZENA DI ... B8
Connecting 10 The DAADASEccuuieuiiiii et e e B8
Creating Your FITSEIVIOOEDuiiiiiiiieeeiii et e e B9
QUENYING YOUI IMTOTEIS ..viitiiieie ettt e e e e e 91
QUENYING DY PrimMary KBY .ouiviiiiiiiiiii et P1
Querying By a NON-Key COlUMIuivuiiiieieie e ae e P1
Retrieving MUITIPIE ROWSccuuiieiiiiiiee et e et e e e e e e e eaae e e eaees 92
Custom Search MetNOdS 1N ACIIONieniiieiieei e eens B3
OUNEING ROWS ...ttt ettt et et e e e e e e e e en e en e e e eeneees 03
Selecting SPECITIC COIUMNSoiiiiiieeiiii e e e e e e e e s 94
Ordering the Results by a SPeCiTiC COTUMNuiviiiiiieiiii e 94
Limiting The RESUITSvuiiiii e oS
EXECUtiNg CUSIOM QUETTESvuuieeiiiieeieiii e e et e e e e et e e et e e et e e e et e e eeaanas 95
uerying Your Database WIthout MOTEISc.vvviiiviiiiniin e 95
Creating @ ROW MOOEDoiiiiiieiiii e e e 96
Inserting, Updating, and Deleling Datacccovuiiiiiiiiiiiiei e o7
TNSEIMTING @ NEW ROW ...oiiiiiiiiie e e e e e e 97
UPAHNG @ TROW .+ ieeeeiieee et e ettt e e et e et e e et s e e e et e e e e et e e e eaan s 98
DEEING B ROW ...iiiiiiieeiii e e e e e e e e e et e e e et e e e eaan s 98
Creating Model ReElEIONSNIPS .. .ccvvvviiiiiiieee e et e e e e 98
Sorting @ Dependent ROWSELviiiiiiiieiiiiie e 102
JOINING YOUN DAIA ..vvueeiiiiiee et e et e e et s e e e et s e e eeaanaeaeees 1oz
TN SCENAITOS ... eveeeeeeteete et e et e e e e e e e e e et e e e e et e et e en e e an e e e e e e e et e en e eneeeneeeneennaees 102

Easy PHP Websites with the Zend Framework

Creating and EXECUtiNg ZeNG_ DD JOINSccceiiuieeeeiiiiieeeeiiieeeeeiiiieeeeeiiee e e e
Creating and ManagiNg VIBWSccuvveeeiiiiieeeeiiieeeeiitaeeeeseiteeeeeeteeeeeseraeeeesanaeens

CTEAING @ VIBW ..eevviiieeeeiie e e e ettt e ettt e et e e e ettt e e e e ettt e e e et e e e e ebteeeeseraaeeeaans
Adding the View 0 the Zend FIaMEWOTKcooiueeeeeiiiieeeeiiiieeeesiiieeeeenenans

DEEING 8 VIBW ..t e e
Reviewing View Creaflon SYNEaXcoveveiiniiiiiiiie e e
Paginating Results with Zend Paginaloroovviiiiiiieiiiiiieeccen e

Create the Paginalion QUETYEuueiiiiiiiee et e e e
Using the Pagination QUETYc.iuiuiiiiiie et ee e e

Adding the Pagination LINKSccuiiiniiiie et ee e
TESE Y OUr KNOWIEAGE ... ceeeviieeeeii ettt e e et e e e et e e e eaannaeeees
7. Chapter 7. TNtegrafiNng DOCIINE 2cvevuiieiieii ettt e e eeaees
TNErOdUCING DIOCIITNEcviieeiee et e et et r e e e e e e e e en e anes

[NErOdUCING thE Z2AZ PIOJECTeeeveie ittt ee e 116

Key Configuration Files and Parametersc.veuiiiiiiniieiiieeieee e
BUITAING PErSISEENT CIASSESvuieeiiiiieeeeii e ettt e e e et e e e et e e e e eaa e

Generating and Updating the SCNeMAveuiiiiiiiiiie e
Querying and Manipulafing YOUr D@c.vvuiiiiieiiiiinie e

Inserting, Updating, and DElEiiNg RECOTTScceeuvveeeeiiiiieeeiiiieeeeeiiieeeeeiieeeens 121

FINAING RECOITS eieeiiiiee it e ettt et e et e e et e e e et eeeeaen e e eeaanns
Managing ENtITY ASSOCIAIIONSucuiriiieiiite et e e e ea e
ConfIgUITNG ASSOCIAEIONSueuiteiee ettt ettt et e et s e e e e et eaaeaene e
DEfNING REPOSITOMESuitiiiieii ettt r e e e e e e en e
ESHNG YOUN WOTK] ...ceeeeieiteit ettt et et et e et e e e e e e e ea e en e e nenaes
Testing Class TNSaNTIAEIONvuieiei e
Testing Record Addition and REIMEVAooveviiiiiiiiiiiiec e
TESE Y OUr KNOWIEAGE ... eeeeviieeeiii ettt sttt e et e e et e e e e et e e e eaanneeeees
8. Managing USEr ACCOUNESuovuuieneeietieeteeteeta e et ee et et e e e ena e e r e e s e e e eeeeeeenennnas
Creating the Accounts Database Tall€vvveviiiiiiiiiiiiece e
Crealing NeW USEr ACCOUNTSoveueieeeneenieeineee et et e et e e een e ee e e e eaaeenaeenaennaernnes
Sending E-mail Through the Zend Frameworkc.ovveviiiiiieiiiiiiieeeiii e
Confirming The ACCOUNTceuiiiiete ettt e e e e e e e en e eenns
Creafing the User LOgIN FEAIUMNEcouuiiuiiiiiiiieeie e e
Determining Whether the User Session iSValidoveeveieeiiiiiieiineeeeeeeee e

Creating the USer LOGOUL FEAILMEvvveeeiiiieeeiiiieeeeeeiiieeeeeitee e e e eire e e e e eatee e e 147

Creating an Automated PasSWord RECOVENY FEAIUMEccuveeeeeuieeeeeiiieeeeiiieeeeans
ESEING YOUF WOTKuvvvieeeeitiee e e ettt e e et e ettt e e et e e e e ettt e e e e ettt e e e e eata e e e e enaaeeeeans
MaKing Sure the Login FOMM EXISESvvviieiiiieeeeciiiececciie et eiee e

Easy PHP Websites with the Zend Framework Vi
Testing the LOgIN PrOCESSuiuiiiiiiie e 153
Ensuring an Authenticaied User Can Access aRestricted Pagec.ovevvvevevnecennnees 154
Testing the Account RegiStralion PrOCEAUIEcievuieeunaeiiieieieeii et eeeeeeenes 154

LIS T S0 1= (o= PSPPI 155
9. Creating Rich User Interfaces with JavaScript and AJaXcovveveiiiiiiiiiiiiieeeeeeen 156
TNIrOAUCING JAVASCIIPE . vt ieeteeit ettt e e e e e e n e anees 157
Syntax FUNAAMENTAISoeeieiiieieii e e e e et e e e e eeanen 158
Introducing the Document OBjeCt MOEccuiiiiiiiiiieiie e 165
TNIFOAUCING JQIUBTY ..viitiieiteie ettt et et e et e e et e e e e e e e e e e e aneanaes 167
TNSEAITING JQUETY .eevtieeiiii et e ettt e e et s e e ettt s e e e et r e e e eat s e e eentnaeaaes 167
Managing EVeNnt LOAdiNGcuivuiiriiiiiiie e 168
[D1@ 1Y I\ T T oV - o T P 169
vent Handling WIth JQUEIYoviii e 173
NEFOAUCIINIG AJBX .+ eteeteet ettt et et et e e e e et e et e e e e s e e n et e e e e e e a e enreen e enaeannennns L7y
Passing MeSSageS USING JSONuuiiiiiiiieiiiiiieeeeiis e e e e et e et e e e 175
Validating ACCOUNT USBIMNAIMESccuiiuiieieeneenieeiien ettt e et e e e e e e eneees [L76
TESE Y OUr KNOWIEAGE ... eevetiieeeiiii ettt ettt et s e et e e et e e e e et s e e e eatn s aeeees 79
TO. TNEegraling WED SEIVICES ...uovuieiiiitieiei et e et e et e e e e e e et e e e anees 180
Introducing Amazon.com's Product Advertising AP ..o, 181
Joining the AmMazon ASSOCIAIES PrOGIaINT .. .c.uueeunietneeiiaeeiiaeeeieeeieeeieeeanaeenneenes 181
reating Your FIrsSt ProduCE LINKc.ceuiiniiiiiieieee e e 182
Creating an Amazon Product AdvertisSing API ACCOUNTc..vvevniieiiieiiieiiieeiines 182
Retrieving a SiNgI€ VIdE0 GaIMEuuuiiiiiiiieeiiii et e e et e e et e e e et e e e eatin e eeees 183
Setting the RESPONSE GIOUM -...vvvueeeerineeeeiiiieeeeitiseeeeti s e e eettn s e eeeatn s eeeestn s eeeenenaaeaens 134
Displaying ProdUCT TMAJEScuvuiiiiiiieie e aaes 185
PUNG 1T AT TOGEINEN ... e e eeaans 186
Searching TOr PrOQUCEScoovveieiiiis e eeaaes 188
Executing Zend Framework Applications From the Command Linec...cceuueeee.. 189
Integrating the GOOGIE MaPS APciiiiiiieeii e 193
Introducing the GoogIe MapS APiiiiiiiieii e 193
Saving GEOCOO ATUUINESSESuvvuirieietiit ettt ettt e e 199
inding Users within a Specifi TUS ettt [200
TESE Y OUr KNOWIEAGE ... eeeeviieeeiii ettt sttt e et e e et e e e e et e e e eaanneeeees 01
I [T A == o T e TV Tl = PRSP 202
INIrodUCING UNIT TESIING - vuvneniie et e e e e e et e e e aanes 202
Readying Your Website Tor Unit TESHNGccvvvvieriiiiiieeiiiiie e e e [203
INSEAITING PHPUNIT ...t e e e e e e eeees 203
Configuring PHPURNIT ...t e e e e e eaaens 204

Easy PHP Websites with the Zend Framework Vii
Creating the TeSE BOOISITADcvvvviieiiiiie et 204
TeStiNg YOUr CONTOIENSeevueieeiiie ettt e et e e e e e e 205
Executing a Single Controller TeSE SUITEuuviviriieeieiie e 207
TESNG YOUr IMIOOEIS ...cvvieeeiiie et e et e e e e e e e e 207
O T L=< A (= 101 P 209
[O0aTe LY e LY - o= P 210
LIS VT S0 1= (o= PSPPI R12
12. Deploying Your Website With CapiSiran0ovuvieiiiiiniiiiiieiniieinenen e neneaees 213
Configuring Your ENVIFONMENT ..o e 213
Installing a Version CoNtrol SOTUTIONvevuierneiiieeeie et eet et e e e e e e eeens 214
Configuring Public-key AUINENTICAIIONc.vvuiiiiiiiiiinein e 17
DePloyiNg YOUr WEDSITEouuiiiiiiiiiii et a e e e 219
Readying Y Oour REMOIE SEIVENiiiiiiiie i e e 223
DeEPIOYING YOUN PIOJECE ...oevviieiiii et 224
ROITING BaCK YOUr PrOJECEvvniiiiii e 224
Reviewing Commits SINCE Last DEPIOYccvvueviiiiieiiiiieeeiiii et 224
TESE Y OUr KNOWIEAGE ... eevetiieeeiiii ettt ettt et s e et e e et e e e e et s e e e eatn s aeeees 225
[©0aT o [T SO SOPPRPPRIN 225
A. Test Your KNOWIEAQE ANSIWELSc.unienieiiiieetieeiieei e eieeteete et e et e e e een e ea e e e eneenees 226
[17 o (= USSP 226
[1= o (= ST 226
[0 (= ST 227
[1= o (= USSP 228
[1= (= TSP 228
(14T 1= TSP 229
(1470 1= ST 229
(10T 1= - PSP 230
(10T 1= TSP 231
[4= 1= 1 PP 231
[4= 1= I PSP 232
[4= 1= 7P 232

List of Figures

2.1°A Zend Framework ProjeClS HOME PagEvvuiiiiiiiieeeiiii e 30
3.1. Using the Zend Framework's Tayout Teaturecooviiiiiiiiiiiiee 4
5.1, Creating atorm With ZENA_FOIMc..uuiiiiiieiiii e 64
5.2, Removing the default Zend_FOrm dECOTAIONSevertuneieriieeeeiiiaeeeeii e eenineeeeeenns 65
5.3. Controlling form Tayout is easy after alll]coooiiiii 166
5.4. Displaying a validation €TOr MESSAJEcuurivuiiiiiieiiieiiie e aes 69
5.5. Notifying the user of an invalid e-mail address................coooiviiiii 71
5.6. Displaying a validation €TOr MESSAJEcuuriiuiiiiiieiiieiie e e 73
5.7.Using the flasn MESSENQErccouiiiiiiii e 77
5.8, GameNOmMad's CONTACT FOMMcivueiieiiiiie ettt ettt e e e e B0
6.1. Building a game profile page using Zend DDccoooiiiiiiii, B7
6.2. Determining whether an account’s friend ownsagame...............c.coeviviiiiiiiiiininnennns [103
8.1. Greeting an authentiCated USEYcooeiiiiiiiiiiii 147
8.2. Recovering alost PassWordc.coviiiiiiiiiii 148
8.3. The password recovery e-mallcoouiiiiiiiiiiiiii e 150
9.1. Creating a JavaScript alert WINAOWcooviiiiiiiiiiiii e, 157
9.2. Using @ custom TUNCETONoouniiiiiii e 160
9.3. Executing an action based 0N SOME USEr VENTcovviiiiiiiiiiiei e 162
9.4. Validating form fields with JavaScriptccccoiiiiiiiii 165

5. Triggering an alert box after the BS T0A0Ecvvevvieieiece e 169
10.1. Assembling avideo game Profile ..o [186
10.2. Centering a Google map over ColUMBDUS, ONIOc.uuueieiiinieiiiiieeeeiieeeeeiieeeennens 194
10.3. Plotting area GameSIOP TOCALIONSoeeerrneeieriiieeeeiti e e eeni e e eeai e e eeeb e eeninaeeees 197
11.1. Viewing a web-based test report ..o [210

11.2. A Doctrine entity code COVerage reportc.cvvviiiiiiiiiiii e 211

List of Tables

3L USEFUT VIBW HEIPETSeeiiiiee ettt e e e e e ettt e e e e e e e e e st aeeeaeeeeaans
5.1 Useful Zend FOrm ValIUAOrSuvvvriieeeeiiiiiiiieieeeeeeeeeiiieieeeeee e s s snnenbereeeeaeeaennees
9.1, Useful JavaScript EVENE HANATENSvvvviieeeiiiiiiiiiiiieee e e e eiiiiee e e e e e s e esineneeeeeee e e e e

9.2. JQuery's supported eVent TYPESoveuiiiiiiiiii

Introduction
The Web Ain't What It Used to Be

The World Wide Web's technical underpinnings are incredibly easy and intuitive to understand,
a characteristic which has contributed perhaps more than anything else to this revolutionary
communication platform's transformational growth over the past 15 years or so. Its aso this trait
which | believe have led so many developers horribly astray, because while the web's plumbing
remains decidely free of complexity eventoday, the practice of devel oping web siteshasevolvedinto
something decidely more complex than perhaps ever would have been imagined even a decade ago.

Despitethistransformation, far too many devel operscontinueto treat web devel opment as something
separate from software development. Y et with the Web having become an indispensable part of
much of the planet’'s personal and business affairs, it is no longer acceptable to treat an enterprise-
level website as anything but an application whose design, development, deployment, and lifecycle
is governed by rigorous process. Embracing a rigorous approach to designing, developing, testing
and deploying websiteswill make you afar more productive and worry-free devel oper, because your
expectations of what should be and realization of what is are identical.

If you quietly admit to not having yet embraced a formalized development process, | can certainly
empathize. For years | too grappled with tortuous code refactoring, unexpected side effects due to
ill-conceived updates, and generally found the testing and deployment process to be deeply steeped
in voodoo. After having been burned by yet another problematic bit of code, a few years ago |
decided to step back from the laptop and take the time to learn how to develop software rather
than merely write code. One of the first actionable steps | took in this quest was to embrace what
was at the time a fledgling project called the Zend Framework. This step served as the basis for
reevaluating practically everything I've come to know about the software devel opment process, and
it has undoubtedly been the most reinvigorating experience of my professional career.

If you too have grown weary of writing code in amanner similar to Shakespeare's typing monkeys,
hoping that with some luck a masterpiece will eventually emerge, and instead want to start
developing software using the patterns, practices, and strategies of devel operswho seemto beunable
to do any wrong, you'll find the next 12 chapters not only transformational, but rather fun.

Book Contents

This book introduces several of the most commonly used features of the Zend Framework,
organizing these topics into the following twelve chapters:

Easy PHP Websites with the Zend Framework

Chapter 1. Introducing Framework-Driven Development

It'sdifficult to fully appreciate the convenience of using atool such asthe Zend Framework without
understanding the powerful development paradigms upon which such tools are built. In this chapter
I'll introduce you to several key paradigms, notably the concepts of convention over configuration,
the power of staying DRY, and problem solving using design patterns.

Chapter 2. Creating Your First Zend Framework Project

Inthischapter you'll learn how toinstall and configurethe Zend Framework, and usethe framework's
command line tool to create your first Zend Framework-powered website. You'll also learn how
to expand the website by creating and managing key application components such as controllers,
actions, and views.

Chapter 3. Managing Layouts, Views, CSS, Images, and
JavaScript

Modern website user interfaces are an amalgamation of templates, page-specific layouts, CSSfiles,
images and JavaScript code. The Zend Framework provides a great number of features which
help reduce the complexities involved in effectively integrating and maintaining these diverse
components, and in this chapter you'll learn al about them.

Chapter 4. Managing Configuration Data

Most websites rely upon a great deal of configuration data such as database connection parameters,
directory paths, and web service APl keys. The challenges of managing this data increases
when you consider that it will often change according to your website's lifecycle stage (for
instance the production website's database connection parameters will differ from those used
during development). The Zend Framework's Zend_Config component was created to address
these challenges in mind, and in this chapter you'll learn how to use this component to maintain
configuration data for each stage of your website's lifecycle.

Chapter 5. Creating Web Forms with Zend_Form

HTML formsare one of the most commonpl acefeaturesfound on awebsite, yet their implementation
isusually achaotic and undisciplined process. The Zend Framework'sZend Form component brings
order to thisimportant task, providing toolsfor not only auto-generating your forms, but also making
available clear procedures for validating and processing the data. In this chapter you'll learn how

Easy PHP Websites with the Zend Framework

Zend Form can remove al of the implementational vagaries from your form construction and
processing tasks.

Chapter 6. Talking to the Database with Zend_Db

These days it's rare to create a website which doesn't involve some level of database integration.
Although PHP makesit easy to communicate with adatabase such as MySQL, this can be a double-
edged sword because it often leads to a confusing mishmash of PHP code and SQL execution
statements. Further, constantly donning and removing the PHP developer and SQL developer hats
can quickly become tiresome and error prone. The Zend Framework's MV C implementation and
Zend Db component goes along way towards removing both of these challenges, and in this chapter
you'll learn how.

Chapter 7. Integrating Doctrine 2

The Zend_Db component presents a significant improvement over the traditional approach to
guerying databases using PHP, however an even more powerful solution named Doctrine 2 isnow at
your disposal. A full-blown object-relational mapping solution, Doctrine provides devel opers with
an impressive array of features capable of not only interacting with your database using an object-
oriented interface, but can also make schema management almost enjoyable.

Chapter 8. Managing User Accounts

Whether you're building an e-commerce site or would prefer readers of your blog register before
adding comments, you'll need an effective way to create user accounts and allow users to easily
login and logout of the site. Further, you'll probably want to provide users with tools for performing
tasks such as changing their password. Accomplishing all of these tasks is easily done using the
Zend Auth component, and in this chapter I'll show you how to use Zend_Auth to implement all
of these features.

Chapter 9. Creating Rich User Interfaces with JavaScript and
Ajax

What's a website without a little eye candy? In a mere five years since the term was coined, Ajax-
driven interfaces have become a mainstream fixture of websites large and small. Y et the challenges
involved in designing, developing and debugging Ajax-oriented features remain. In this chapter I'll
introduce you to JavaScript, the popular JavaScript library jQuery, and show you how to integrate a
simple but effective Ajax-based username validation feature into your website.

Easy PHP Websites with the Zend Framework

Chapter 10. Integrating Web Services

Every web framework sports a particular feature which sets it apart from the competition. In the
Zend Framework's case, that feature is deep integration with many of the most popular web services,
among them Amazon's EC2, S3, and Affiliate services, more than ten different Google services
including Google Calendar and Y ouTube, and Microsoft Azure. In this chapter I'll introduce you to
Zend_Service_Amazon (the gateway to the Amazon Product Advertising API), aZend Framework
component which figures prominently into GameNomad, and also show you how easy it is to
integrate the Google Maps API into your Zend Framework application despite the current lack of a
Zend Framework Google Maps APl component.

Chapter 11. Unit Testing Your Zend Framework Application

Most of the preceding chaptersinclude a special section devoted to explaining how to use PHPUnit
and the Zend Framework's Zend_Test component to test the code presented therein, however because
properly configuring these tools is such a source of pain and confusion, | thought it worth devoting
an entire chapter to the topic.

Chapter 12. Deploying Your Website with Capistrano

Lacking an automated deployment process can be the source of significant pain, particularly asyou
need to update the production site to reflect the latest updates and bug fixes. In this chapter I'll show
you how to wield total control over the deployment process using a great deployment tool called
Capistrano.

Reader Expectations

You presumably expect that | possess a certain level of knowledge and experience pertaining to
PHP and the Zend Framework. The pages which follow will determine whether |'ve adequately met
those expectations. Likewise, in order for you to make the most of the material in this book, you
should possess a basic understanding of the PHP language, at least a conceptual understanding of
object-oriented programming and preferably PHP's particular implementation, and a basic grasp of
Structured Query Language (SQL) syntax, in addition to fundamental relational database concepts
such as datatypes and joins.

If you do not feel comfortable with any of these expectations, then while I'd imagine you will still
benefit somewhat from the material, chances are you'll have alot more to gain after having read my
book Beginning PHP and MySQL, Fourth Edition, which you can purchase from WJGilmore.com.

Easy PHP Websites with the Zend Framework

About the Companion Project

Rather than string together a bunch of contrived examples, an approach which has become
all too common in today's programming books, you'll see that many examples are based on
a social networking website for video gamers. This website is called GameNomad (http://
gamenomad.wjgilmore.com), and it embodies many of the concepts and examples found throughout
the book. All readers are able to download all of the GameNomad source code at WJGilmore.com.
Once downloaded, unarchive the package and read the | NSTALL. t xt fileto get started.

Like any software project, | can guarantee you'll encounter a few bugs, and encourage you to e-
mail your findings to support@wjgilmore.com. Hopefully in the near future I'll make the project
availableviaaprivate Git repository which readerswill be ableto usein order to conveniently obtain
the latest updates.

About the Author

W. Jason Gilmore is a developer, trainer, consultant, and author of six books, including the
bestselling "Beginning PHP and MySQL, Fourth Edition" (Apress, 2010), "Easy PHP Websites
with the Zend Framework" (W.J. Gilmore LLC, 2011), and "Easy PayPal with PHP" (W.J. Gilmore
LLC, 2009). Heisaregular columnist for Developer.com, JS Magazine, and PHPBUuilder.com, and
has been published more than one hundred times over the years within leading online and print
publications. Jason has instructed hundreds of developersin the United States and Europe.

Jason is co-founder of the popular CodeMash Conference http://www.codemash.org), and was a
member of the 2008 MySQL conference speaker selection board.

Contact the Author

| love responding to reader questions and feedback. Get in touch at wj@wjgilmore.com

Chapter 1. Introducing
Framework-Driven Development

Although the subject of web development logically falls under the larger umbrella of computer
science, mad science might be a more fitting designation given the level of improvisation,
spontaneity and slapdashery which hastaken place over thelast 15 years. To befair, the World Wide
Web doesn't have a stranglehold on the bad software market, however in my opinion bad code and
practices are so prevalent within the web development community is because many web developers
tend not to identify awebsite as software in the first place.

Thismisinterpretationisparadoxical, because websites are actually software of amost complex type.
User expectations of perpetual uptime, constant exploitation attempts by a worldwide audience of
malicious intruders, seamless integration with third-party web services such as Amazon, Facebook
and Twitter, availability on all manner of platforms ranging from the PC to mobile devices and now
the iPad, and increasingly complex domain models as businesses continue to move sophisticated
operations to the web are all burdens which weigh heavily upon today's web devel oper.

Todeal with thisgrowing complexity, leading devel opershave devoted agreat deal of timeand effort
to establishing best practiceswhich help the community embrace aformalized and rigorous approach
to website devel opment. The web application framework is the embodiment of these best practices,
providing developers with a foundation from which a powerful, secure, and scalable website can
be built.

Introducing the Web Application Framework

While I could come up with my own definition of a web application framework (heretofore called
aweb framework), it would likely not improve upon Wikipedia's version (http://en.wikipedia.org/
wiki/Web_application_framework):
A web application framework is a softwar e framework that is designed to support
the development of dynamic websites, web applications and web services. The
framework aims to alleviate the overhead associated with common activities
used in web development. For example, many frameworks provide libraries for
database access, templating frameworks and session management, and often
promote code reuse.

http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Web_application_framework

Easy PHP Websites with the Zend Framework 16

That's quite a mouthful. I'll spend the remainder of this chapter dissecting this definition in some
detail in order to provide you with awell-rounded understanding of what solutions such as the Zend
Framework haveto offer.

Frameworks Support the Development of Dynamic Websites

Dynamic websites, like any software application, are composed of three components:. the data, the
presentation, and the logic. In the lingo of web frameworks, these components are referred to as the
model, view, and controller, respectively. Y et most websitesintermingle these components, resulting
in code which might be acceptable for small projects but becomes increasingly difficult to manage
as the project grows in size and complexity. Asyou grow the site, the potential for problems due to
unchecked intermingling of these components quickly becomes apparent:

» Technology Shifts: MySQL has long been my preferred database solution, and | don't expect that
sentiment to change anytime soon. However, if another more attractive database comes along one
day, it would be foolhardy to not eventually make the switch. But if a site such as GameNomad
were created with little regard to tier separation, we'd be forced to rewrite every MySQL call and
possibly much of the SQL to conform to the syntax supported by the new database, in the process
potentially introducing coding errors and breaking HTML output due to the need to touch nearly
every script comprising the application.

e Presentation Maintainability and Flexibility: Suppose you've stretched your graphical design
skills to the limit, and want to hire a graphic designer to redesign the site. Unfortunately, this
graphic designer knowslittle PHP, and proceedsto remove all of those"weird lines of text" before
uploading the redesigned website, resulting in several hours of downtime while you recover the
site from a backup. Furthering your problems, suppose your site eventually becomes so popular
that you decide to launch aversion optimized for handheld devices. Thisis afeature which would
excite users and potentially attract new ones, however because the logic and presentation are so
intertwined it's impossible to simply create a set of handheld device-specific interfaces and plug
them into the existing code. Instead, you're forced to create and subsequently maintain an entirely
new site!

 Code Evolution: Over timeit's only natural your perspective on approaches to building websites
will evolve. For instance, suppose you may initially choose to implement an Openl D-based
authentication solution, but later decide to internally host the authentication mechanism and data.
Y et because the authentication-specific code is sprinkled throughout the entire website, you're
forced to spend a considerable amount of time updating this code to reflect the new authentication
approach.

Easy PHP Websites with the Zend Framework 17

e Testability: If | had adollar for every time | wrote a bit of code and pressed the browser reload
button to seeif it worked properly, thisbook would have been written from my yacht. Hundreds of
dollars would have piled up every time | determined if a moderately complex form was properly
passing data, verified that data retrieved from a SQL join was properly format, and ensured that a
user registration feature sent the new registrant a confirmation e-mail. Sound familiar? The time,
energy, and frustration devoted to this inefficient testing strategy can literaly add weeks to the
devel opment schedule, not to mention make your job alot less fun.

So how can you avoid these universal problems and hassles? The solution is to separate these
components into distinct parts (also known as tiers), and write code which loosely couples these
componentstogether. By removing the interdependencies, you'll create amore manageable, testable,
and scalable site. One particularly popular solution known as an MVC architecture provides you
with the foundation for separating these tiers from the very beginning of your project!

Let'sreview the role each tier plays within the MV C architecture.
The Model

Y ou can snap up the coolest domain hame and hire the world's most talented graphic designer, but
without content, your project is going nowhere. In the case of GameNomad that dataislargely user-
and game-related. To manage this data, you'll logically need to spend some time thinking about and
designing the database structure. But there's much more to effectively managing an application's
data than designing the schema. Y ou'll also need to consider characteristics such as session state,
data validation, and other data-related constraints. Further, as your schema evolves over time, it
would be ideal to minimize the number of code modifications you'll need to make in order to
update the application to reflect these schema changes. The model tier takesthese sorts of challenges
into account, acting as the conduit for all data-related tasks, and greatly reducing the application's
underlying complexity by centralizing the data-specific code within well-defined classes.

The View

The second tier comprising the MV C architectureistheview. Theview isresponsiblefor formatting
and displaying the website's data and other visual elements, including the CSS, HTML forms,
buttons, logos, images, and other graphical features. Keepin mind that aview isn't restricted to solely
HTML, asthe view is also used to generate RSS, Flash, and printer-friendly formats. By separating
theinterface from the application'slogic, you can greatly reduce the likelihood of mishaps occurring
when the graphic designer decides to tweak the site logo or a table layout, while also facilitating
the devel oper's ability to maintain the code's logical underpinnings without getting lost in a mess of
HTML and other graphical assets.

Easy PHP Websites with the Zend Framework 18

Try asonemay, atypical view will almost certainly not bedevoid of PHP code. Infact, asyou'll seein
later chapters, even when using frameworksyou'll still use simple logic such aslooping mechanisms
and if statements to carry out various tasks, however the bulk of the complex logic will be hosted
within the third and final tier: the controller.

The Controller

The third part of the MV C triumvirate is the controller. The controller is responsible for processing
events, whether initiated by the user or some other actor, such as a system process. Y ou can think
of the controller like alibrarian, doling out information based on a patron's request, be it the date of
Napoleon's birth, the location of the library's collection of books on postmodern art, or directionsto
the library. To do this, the librarian reacts to the patron's input (a question), and forms a response
thanks to information provided by the model (in this case, either her brain, the card catalog, or
consultation of a colleague). In answering these questions, the librarian may dole out answersin a
variety of formats (which in MV C parlance would comprise the view), accomplished by talking to
the patron in person, responding to an e-mail, or posting to a community forum.

A framework controller operates in the same manner as a librarian, accepting incoming requests,
acquiring the necessary resources to respond to that request, and returning the response in an
appropriate format back to the requesting party. Asyou've probably already deduced, the controller
typically respondsto these requests by invoking somelevel of logic and interacting with the model to
produce aresponse (the view) which is formatted and returned to the requesting party. This process
is commonly referred to as an action, and they're generally referred to as verbs, for example "add
game", "find friend", or "contact administrator".

MVC in Action

So how do these three components work in unison to power a website? Consider a scenario
in which the user navigates to GameNomad's video game listing for the PlayStation 3 console
(http://gamenomad.wjgilmore.com/games/console/ps3). The model, view, and controller all play
important roles in rendering this page. I'll break down the role of each in this section, interweaving
the explanation with some Zend Framework-specific behavior (although the processis practically
identical no matter which MV C-based web framework solution you use):

» The Controller: Two controllers are actually involved with most requests. The front controller is
responsiblefor routing incoming requeststo the appropriate application controller whichistasked
with responding to requests associated with a specific URL. The controller naming convention
and class structure usually (but is not required to) corresponds with the URL structure, so the
URL ht t p: // gamenonad. wj gi | nor e. conf ganes/ consol e/ ps3 maps to an application controller

Easy PHP Websites with the Zend Framework 19

named Garres. Within the canes controller you'll find a method (also known as an action) named
consol e which is passed the parameter ps3. Theconsol e actionisresponsiblefor retrieving alist
of video games associated with the specified console, in this case the PS3, and then passing that
list to the associated view. The video games are retrieved by way of the model, discussed next.

e TheModel: Asyou'll learnin later chapters, GameNomad's model consists of anumber of object-
oriented classes, each representative of a data entity such as a gaming console, video game, or
user account. Two models are actually required to retrieve alist of games supported on the PS3
console, namely Consol e and Gare. By using the Consol e class to create an object representative
of the PS3 console, we can in turn retrieve alist of all video games associated with that console,
making this list available to the controller as an array of Gane objects. Each Gane object contains
attributes which are named identically to the associated database tabl€'s columns. Therefore the
Gane object includes attributes named nane, pri ce, and descri pt i on, among others. Don't worry
about the mechanics behind this process, as you'll be introduced to this subject in great detail in
|ater chapters.

» The View: Once the controller receives the array of Gane objects back from the model, it will
pass this array to the view, which will then iterate over the objects and embed them into the view
template. Doing this will logicaly require a bit of PHP syntax, but only a looping mechanism
such asaf or each statement and basic object-oriented syntax.

Frameworks Alleviate Overhead Associated with Common
Activities

Web frameworks were borne from the understanding that all dynamic websites, no matter their
purpose, share common features which can be abstracted into generally reusable implementations.
For instance, almost every website will need to validate user input, communicate with a data source
such as a relational database, and rely upon various configuration settings such as mail server
addresses and other data such as API devel oper keys. A web framework removes many of the design
decisions you'll need to make regarding how to approach data validation and configuration data
management by embracing two powerful paradigms known as convention over configuration and
staying DRY.

Convention Over Configuration
The number of decisions a devel oper must make when starting a new project is seemingly endless.

Conclusions must be drawn regarding how approaches to tasks such as manage templates and
configuration parameters, validate forms, and cache data and static pages, to say nothing of

Easy PHP Websites with the Zend Framework 20

more mundane decisions such as file- and database table-naming conventions, documentation
processes, and testing policy. Making matters worse, it's not uncommon for a developer to vary the
implementation of these decisions from one project to the next, introducing further chaos into the
development and maintenance process.

Frameworks attempt to reduce the number of decisions a developer has to make throughout the
development process by advocating an approach of convention over configuration. In reducing
the number of decisions you have to make by offering implementation solutions right out of the
box, you'll logically have more time to spend building those features which are specific to your
application's problem domain. As you'll learn in the chapters that follow, the Zend Framework
removes the bulk of the decisions you'll need to make regarding all of the matters mentioned in the
previous paragraph. | believe this alleviation of uncertainty is one of the strongest pointsto consider
when weighing the advantages of aframework against creating awebsite from scratch. Ask yourself,
should you be spending valuabl e time doing the middling taskswhich will invariably come up every
time you set out to create a new website, or should you simply let aframework do the thinking for
you in those regards while you concentrate on building the most compelling website possible? |
think you know the answer.

Staying DRY

Avoiding repetition within your code, also known as staying DRY (Don't Repeat Y ourself), isone of
programming's oldest and most fundamental tenets, with constructs such asthe function having made
an appearance within even the earliest languages. Frameworks embrace this concept on multiple
levels, notably not only allowing you to reduce redundancy within the application logic, but also
within the presentation. For instance, the Zend Framework offers a feature known as a view helper
which operates in a manner similar to a function, and is useful for eliminating redundancy within
your page templates.

As an example, GameNomad allows registered users to assign a star rating to various technology
products. This starred rating is displayed as a series of oneto five star icons, and appears not only on
the product detail page, but also as a sortable visual cue within category listings. The average rating
will be stored in the database as an integer value, meaning somelogic isrequired for converting that
integer value into a corresponding series of star icons. While the logic is simplistic, it's nonetheless
significant enough that avoiding repeating it throughout your application would be ideal. You can
avoid the repetition by bundling this logic within a view helper, and then referencing that view
helper much like you would a PHP function within your presentational code. Contrast this with
redundantly embedding the logic wherever needed within the website, and then struggling to update
each repetitive instance following a decision to update the location of your website images. You'll
learn how to create and implement both action and view helpersin Chapter 3.

Easy PHP Websites with the Zend Framework 21

Frameworks Provide a Variety of Libraries

Beyond helping you to quickly surpass the myriad of implementation decisions which need to be
made with the onset of each project, many mainstream frameworks provide a wide assortment of
libraries which assist in the implementation of key features such as database integration and user
authentication. In this section I'll provide three examples of the power these libraries can bring to
your projects.

Database Integration

The practice of repeatedly jumping from one language such as PHP to SQL within a web page is
a rather inefficient affair. For instance, the following sequence of statements is something you'll
typically encounter in a PHP- and MySQL -driven web page:

$sgl = "SELECT id, platformid, title, price FROM ganes ORDER BY title";
$query = $db->prepare($sql);

$quer y- >execut e() ;

$query->store_result();

$query->bind_result($id, $platformid, $title, $price);

What if you could write everything in PHP? Using the Zend Framework's Zend_Db component, you
can achieve an identical result while foregoing altogether the need to write SQL statements:

$gane = new Application_Mdel _Gane();

$query = $gane- >sel ect () ;

$query->from(array('id , 'platformid , 'title', 'price'));
$query->order("title');

$result = $ganme- >fetchAl | ($query);

This programmatic approach to interacting with the database has an additional convenience of giving
you the ability to move your website from one database to another with minimum need to rewrite
your code. Because most frameworks abstract the database interaction process, you're freeto switch
your website from one supported database to another with minimum inconvenience.

User Authentication

Whether your website consists of just a small community of friends or is an enormous project with
international reach, chances are you'll require a means for uniquely identify each user who interacts
with your site at some level (typically done with user accounts). Zend Auth (discussed in Chapter
8) not only provides you with a standardized solution for authenticating users, but also providesyou
with interfaces to multiple authentication storage backends, such as a relational database, LDAP,
and OpenlD. Further, while each backend depends upon custom options for configuration, the

Easy PHP Websites with the Zend Framework 22

authentication processisidentical for all solutions, meaning that even when switching authentication
solutions you'll only have to deal with configuration-related matters.

Web Services

Today's website is often hybridized a construct created from the APIs and data of other online
destinations. GameNomad is a perfect example of this, relying upon the Amazon Associates web
Service for gaming data and the Google Maps API for location-based features, among others.
Without this ability to integrate with other online services such as these, GameNomad would be a
far less compelling project.

While many of these services are built using standardized protocols and data formats, there's no
doubt that writing the code capable of talking to them is a time-consuming and difficult process.
Recognizing this, many frameworks provide libraries which do the heavy lifting for you, giving you
the tools capable of connecting to and communicating with these third-party services. For its part,
the Zend Framework offers Zend_Gdata, for interacting with Google services such as Book Search,
Google Calendar, Google Spreadsheets, and YouTube. You'll also find Zend_Service Twitter,
for talking to the Twitter service (http://www.twitter.com/), Zend_Service_Amazon, for retrieving
data from Amazon's product database through its web Services API (http://aws.amazon.com/
), and Zend_Service Flickr, for creating interesting photo-based websites using Flickr (http:/]
www.flickr.com/), one of the world's largest photo sharing services.

Test-Driven Development

Suffice to say that even atotal neophyte is acutely aware of the programming industry's gaffe-filled
history. Whether we're talking about last Tuesday's emergency security fix or the high-profile crash
of the Mars Orbiter due to a simple coding error, it seems as if our mistakes are chronicled in far
more detail than those made within other professions. And for good reason, given that computing
affects practically every aspect of people'slives, both personal and professional.

Given the significant role played by today's computing applications, why are programmers so
seemingly careless? Why does the industry remain so prone to blunders large and small? Although
I'd loveto offer some complicated scientific explanation or convincing conspiracy theory, the answer
isactualy quite elementary: programming is hard.

So hard in fact, that some of the professional programming community has come to the grips with
the fact that mistakes are not only likely, but that they are inevitable. They have concluded that the
only reasonable way to lessen the frequency of mistakes creeping into the code is by integrating
testing into the development process, rather than treating it as something which occurs after the

http://www.twitter.com/
http://aws.amazon.com/
http://www.flickr.com/
http://www.flickr.com/

Easy PHP Websites with the Zend Framework 23

primary development stage is over. In fact, agrowing movement known as test-driven devel opment
emphasizes that tests should be written before the application itself!

To help developers out with the testing process, the Zend Framework comes with a component
called Zend Test which integrateswith the popular PHPUnit testing framework. Using this powerful
combination, you can create tests which verify your website isworking exactly asintended. Further,
you can automate the execution of these tests, and even create avariety of reporting solutions which
provide immediate insight into the proper functioning of your site.

| believe this to be such an important part of the development process that subsequent chapters
conclude with a section titled "Testing Y our Work™. This section presents several common testing
scenarios which relate to the material covered in the chapter, complete with a sample test. Further,
Chapter 11 isentirely devoted to the topic of configuring PHPUnit to work with Zend Test.

Hopefully this opening section served as a compelling argument in favor of using a framework
instead of repeatedly building custom solutions. And we've hardly scratched the surface in termsthe
advantages! My guess is that by this chapter's conclusion, you'll be wondering how you ever got
along without using a framework-centric approach.

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

* Identify and describe the three tiers which comprise the MV C architecture.

» How does the concept of "convention over configuration" reduce the number of devel opment
decisions you need to make?

* Name two ways the Zend Framework helps you keep your code DRY .

Chapter 2. Creating Your First
Zend Framework Project

Getting started building your first Zend Framework-powered website is surprisingly easy thanks
to agreat utility called zf which not only automates the process of creating new Zend Framework
applications, but also automates the generation of key project components such as controllers,
actions, models, and views. In this chapter I'll show you how to get started using the framework by
guiding you through the framework installation and configuration process, followed by a thorough
introductionto the powerful zf tool. After creating your first project, I'll help you navigate through the
various directories and files comprising the default project structure, and show you how to generate
project controllers, actions, and views. Following that, you'll learn how to pass and retrieve data
from one controller action to another using the GET and POST methods, in addition to modify
the framework's default URL routes behavior to your specific needs. Finaly, I'll present several
examples which demonstrate how to test various aspects of the features introduced in this chapter.

Downloading and Installing the Zend Framework

Open your browser and navigateto http://framework.zend.com/downl oad/l atest. Scroll to the bottom
of the page where you'll find links to the full and minimal versions of the Zend Framework. |
recommend downloading thefull version asit contains everything you could possibly need to follow
along with the rest of this book, and a whole lot more. Download the tar. gz or zi p package
depending on your operating system's capabilities (the ZIP format is typical for Windows users,
whereas the TAR format is common for Linux users, athough you may be able to use either
depending on what decompression software is available on your computer).

Tip

If you're familiar with Subversion, consider retrieving the latest stable version by checking
the project out from Zend's Subversion repository. In doing so you'll be able to easily
update your framework source files to the latest stable version using Subversion's UPDATE
command.

Within the decompressed directory you'll find a directory named | i brary. Thelibrary directory
contains the files which together make the Zend Framework run. Because you'll likely soon bein
the position of simultaneously building or maintaining multiple Zend Framework-driven websites,
I recommend placing this directory within a location where it won't later be disturbed, and then
add this location to PHP's i ncl ude_pat h configuration directive. For instance, if you store the

http://framework.zend.com/download/latest

Easy PHP Websites with the Zend Framework 25

l'ibrary directory in/hone/wj gi | nore/ src/ zfwl10/1i brary then you should open the php. i ni
configuration file and add the path to your i ncl ude_pat h directive like this;

‘ i nclude_path = ".:/usr/share/php/:/hone/w gil nore/src/zfwll10/Ii brary"

Once the change has been made, save the file and restart the web server.

Configuring the zf Tool

One redly interesting feature of the Zend Framework is a component known as
Zend_Tool_Framework. This component acts asan API of sortsto many features of the framework,
allowing you to create custom utilities useful for managing the framework tooling in powerful
new ways. This component has already been extended to provide devel opers with a command line
interface typically referred to as zf, which can be used to not only create a new project, but also to
extend your project by adding new controllers, actions, views, models, and other features. While
you're not required to use zf to manage your projects, | guarantee it will be a significant timesaver
and so highly recommend doing so.

To configure zf, return to the decompressed Zend Framework directory where you'll find adirectory
named bi n. This directory contains the scripts which you'll access viathe command line, including
zf . bat, zf . php, and zf . sh.

On Windows, copy the zf . bat and zf . php files into the same directory where your php. exe fileis
located (the directory where PHP was installed). Next, make sure the directory where php. exe is
located has been added to your system path. Once added, you'll be able to execute the zf command
from any location within your file system.

On Linux the process is essentidly the same; just add the framework directory's bi n directory
location to your system path:

% PATH=$PATH: / pat h/ t o/ your / zend/ f r anewor k/ bi n/ di rect ory
%export PATH

Of course, you'll probably want to make this path modification permanent, done by adding a line
similar to the following to your . bash_profil e file

‘ export PATH=$PATH: / pat h/ t o/ your/ zend/ f ramewor k/ bi n/ di rect ory

Next, confirm zf is working properly by executing the following command from your prompt:

%zf show version
Zend Framework Version: 1.11.2

Easy PHP Websites with the Zend Framework 26

If you do not see your framework version number, and instead receive an error, it's likely because
the wrong path was used within the system path variable or when defining the 1 i brary directory's
location within the i ncl ude_pat h directive. So be sure to double-check those settings if you
encounter a problem. Presuming your framework version number has indeed been displayed, move
on to the next section!

Tip

If you're using any version of Microsoft Windows, you're probably aware that the native
terminal window is a piece of trash. As you'll presumably be spending quite a bit of time
using zf, typing commands into this nightmarish interface will quickly become tiresome.
Save yourself some pain and consider installing Console2 (http://sourceforge.net/projects/
consolef), a fantastic command prompt replacement which lets you run multiple prompts
using atabbed interface, and perform useful tasks such as changing the font size and color,
and resizing the window.

Creating Your First Zend Framework Project

With the Zend Framework installed and zf configured, it's time to create a project. Open aterminal
window and navigate to your web server's document root (or wherever else you choose to manage
your websites). Once there, execute the following command:

%zf create project dev.ganmenonad.com

Creating project at /var/ww dev. gamenonad. com
Note: This command created a web project, for nore
informati on setting up your VHOST,

pl ease see docs/ READVE

The project name is completely up to you, however for organizationa purposes | prefer to name
my projects similarly to the URL which will be used to access them via the browser. Because the
project is hosted on my development laptop, 1'd like to reference the project viathe URL http: //
dev. ganenomad. comand so have named the project accordingly.

Adjust Your Document Root

Y ou might recall how in the previous chapter we talked about how the Zend Framework uses afront
controller to process all incoming requests. This front controller is contained within a file named
i ndex. php, and it residesin adirectory named publ i c. Y ou don't need to create thisdirectory or file,
because zf automatically created both for you when the project was generated. In order for the front
controller to be able to intercept these requests, the publ i ¢ directory must be identifiable by Apache
as the site's root directory. Precisely how this is done will depend upon your system's particular

http://sourceforge.net/projects/console/
http://sourceforge.net/projects/console/

Easy PHP Websites with the Zend Framework 27

configuration, however presuming you're running the recommended latest stable version of Apache
2.2.X let's do things the proper way and configure avirtual host for the new site. Doing so will give
you the ability to easily maintain multiple websites on the same web server.

What isa Virtual Host?

A virtual host is amechanism which makesit possible to host multiple websiteson asingle
machine, thereby reducing hardware and support costs. If you host your website at ashared
hosting provider, then your site is configured as a virtual host alongside hundreds, and
perhaps even thousands of other websites on the same server. This feature is also useful
when devel oping websites, because you can simultaneously develop and maintain multiple
sites on your development machine, and even reference them by name within the browser
rather than referring to local host.

Configuring a Virtual Host on Windows

Setting up an Apache-based virtual host on Windowsis apretty easy process, accomplishedin just a
few steps. First you want to configure Apache's virtual hosting feature. Open your ht t pd. conf file
and uncomment the following line:

#l ncl ude conf/extral/httpd-vhosts. conf

Thisht t pd- vhost s. conf filewill contain your virtual host definitions. Open thisfileand you'll find
the following block of text:

<Vi rtual Host *: 80>

Ser ver Adm n webmast er @unmy- host . | ocal host

Docunent Root " C:/apache/ docs/ dummy- host . | ocal host "

Ser ver Name dummy- host . | ocal host

Server Al i as ww. dunmy- host . | ocal host

ErrorLog "I ogs/ dummy- host . | ocal host-error. | og"

CustonlLog "I ogs/ dummy- host . | ocal host - access. | 0g" conmon
</ Vi rt ual Host >

This vi rtual Host block is used to define a virtual host. For instance to define the virtual host
dev. ganenomad. com(which will be used for a Zend Framework-powered website) you should copy
and paste the block template, modifying it like so:

<Virtual Host *:80>
Server Adm n webmast er @unmy- host . | ocal host
Document Root " C: /apache/ docs/ dev. ganmenonad. com publ i c"
Server Name dev. ganenomad. com
Server Al i as dev. ganenomad. com

Easy PHP Websites with the Zend Framework 28

ErrorLog "I ogs/ dev. ganenonad. com error. | 0og"
Cust onLog "Il ogs/ dev. ganmenonmad. com access. | og" comon
</ Vi r t ual Host >

The ser ver Adni n setting isirrelevant because Windows machines are not by default configured to
send e-mail. The Docunent Root should define the absolute path pointing to the Zend Framework
project's publ i ¢ directory (more on thisin abit). The Ser ver Nane and Ser ver Al i as Settings should
identify the name of the website as you would like to access it locally. Finally, the Error Log and
Cust onlLog Settings can optionally be used to log local traffic.

Save the httpd-vhosts. conf file and restart Apache. Finally, open the hosts file, which on
Windows XP and Windows 7 is located in the directory C:\ W NDOAB\ syst enB2\ dri vers\ et c.
Presuming you've never modified thisfile, the top of the file will contain some comments followed
by thisline:

‘127.0.0.1 | ocal host

Add the following line directly below the above line:

‘127.0.0.1 dev. ganenonmad. com

Save thisfile and when you navigate to ht t p: / / dev. ganenomad. com your machine will attempt to
resolvethisdomain locally. If Apacheisrunning and you accessthis URL viayour browser, Apache
will look to the virtual host file and server the domain's associated website.

Configuring a Virtual Host on Ubuntu

Ubuntu deviates from Apache's default approach to virtual host management in a very practical
way, defining each virtual host within a separate file which is stored in the directory / et ¢/ apache2/
sites-avai |l abl e/ . For instance, a partial listing of my development machine's si t es- avai | abl e
directory lookslike this:

dev. gamenonmad. com
dev. w gi | nore. com

All of these files include a Vi rt ual Host container which defines the website's root directory and
default behaviorsas pertinent to Apache's operation. Thisisafairly boilerplatevirtual host definition,
insomuch that when | want to create anew virtual host | just copy one of the filesfound in si t es-
avai | abl e and rename it accordingly. What's important is that you notice how the Docunent Root
and Di rect ory definitions point to the website's publ i ¢ directory, because that's where the front
controller resides. For instance, the dev. ganenonad. comfile looks like this:

Easy PHP Websites with the Zend Framework 29

<Virtual Host *>
Server Adm n webmast er @ ocal host
Ser ver Nane dev. ganenonmad. com

Docunent Root /var/ww/ dev. ganenonad. con publ i c
<Directory />
Opti ons Fol | owSyniLi nks
Al owOverride All
</Directory>
<Di rectory /var/ww/ dev. ganenomad. coni public/ >
Options | ndexes Fol | owSynLi nks Mul ti Vi ews
Al owOverride All
O der al |l ow, deny
allow fromall
</Directory>

ErrorLog /var/| og/ apache2/error.| og
LogLevel warn
CustonlLog /var/| og/ apache2/ access. | og conbi ned

</ Vi r t ual Host >

With the virtual host defined, you're not able to access the site just yet. The sites-avail abl e
directory only contains the sites which you have defined. To enable a site, you'll need to execute
the following command:

%sudo a2ensite dev.ganenonmad.com

Attempting to access this site from within the browser will cause your machineto actually attempt to
resolve the domain, because your machine doesn't yet know that it should instead resolve the domain
name locally. To resolve the name locally, open your / et ¢/ host s file and add the following line:

127.0.0.1 dev. ganmrenonmad. com

Once this file has been saved, all subsequent attempts to access dev. gamenomad. comwill result in
your machine resolving the domain locally! You may need to clear the browser cache if you had
attempted to access dev. ganenonad. combefore modifying your host s file.

Navigate to the Project Home Page

Presuming your project has been correctly configured, you should see theimage displayed in Figure
2.1.

Easy PHP Websites with the Zend Framework 30

Welcome to the 7end
Framework!

This is your project's main page
o

Figure2.1. A Zend Framework Project's Home Page

If this page doesn't appear, double-check both the changes you made to Apache's configuration file
and your system's host s file to make sure there aren't any spelling mistakes, and that the directory
you reference in the virtual host isindeed the correct one.

The Project Structure

A Zend Framework project structure consists of quite afew directories and files, each of which plays
an important role in the website's operation. Taking some time to understand their specific rolesis
going to help you to swiftly navigate among and modify thesefiles as your site beginsto take shape.
Open aterminal window and list the contents of the newly created project's home directory. There
you'll find five directories and one file, each of which isintroduced next:

 application: The application directory contains the bulk of your website's domain-specific
features, including the actions, configuration data, controllers, models, and views. Additionally,
this directory contains afile named Boot st r ap. php, Which isresponsible for initializing dataand
other resources specific to your website. I'll return to thisfile throughout the book as needed.

 docs: Thedocs directory isintended to store your website's developer documentation, including
notably documentation generated using an automated sol ution such as PHPDoc.

Easy PHP Websites with the Zend Framework 31

e library: Empty by default, theli brary directory isintended to host third-party libraries which
supplement your website's behavior. I'll return to this directory in later chapters as the example
website grows in complexity.

e public: The public directory contains the website files which should not be processed via
the front controller, including notably the site's CSS stylesheets, images, and JavaScript files.
Additionally in this directory you'll find the front controller i ndex. php) and . ht access file
responsible for redirecting all client requests to the front controller, which in turn identifies the
appropriate application controller to contact. A newly created project's publ i ¢ directory contains
nothing but the . ht access and i ndex. php files, meaning you'll need to create directories for
organizing other site assets such as the images and JavaScript. In Chapter 3 I'll talk more about
best practices for managing this data.

e tests: Thetests directory contains the website's test suite. I'll talk about this directory in some
detail in Chapter 11.

e .zfproject.xn : This file contains a manifest of al changes made by the zf's command line
interface, organized in XML format. While it's quite unlikely you'll ever need to view or modify
thisfile's contents, under no circumstances should you delete it because doing so will negate your
ability to continue using zf in conjunction with your project.

Incidentally, although thisisthe most common way to organize aZend framework project, it'snot the
only supported structure. You'll occasionally see project's organized as a series of modules, because
it's possible to build Zend Framework-driven applications which can be plugged into another site
as amodule. | suspect that as it becomes easier to create and distribute these modules, you'll see
this alternative structure gain in popularity however for the time being | suggest using the default
structure until the growing complexity of your project warrants exploring other options.

Extending Your Project with Controllers, Actions, and
Views

Following the project skeleton generation, zf will remain a constant companion throughout the
lifetime of your project thanksto its ability to also create new project controllers, actions, and views
(it can also create models, but that's a subject for chapters 6 and 7).

Warning

At the time of this writing zf was incapable of recognizing changes made to the project
which were not carried out using the command-line interface. Thisis because zf considers

Easy PHP Websites with the Zend Framework 32

the. zf proj ect . xmi manifest introduced in the previous section to be the sole determinant
in regardsto the current project state. Thereforeif you manually create a project component
such asacontroller and then later try to add an action to the controller using zf, you will be
greeted with awarning stating that the controller does not exist, because there is no record
of it existing as determined by the . zf proj ect . xni file.

Creating Controllers

When a new project is generated, zf will also create the | ndex and Error controllers, so you can
go about modifying the I ndex controller right away. As you expand the site, you'll logically want
to create additional controllers. For instance, we might create a controller named About which will
visitors a bit more about your organization. To do this, usethecreate control | er command:

%zf create controller About

Executing this command will result in the creation of the About controller containing one action
named | ndexAct i on, a corresponding i ndex view, and an About controller test file. The project
profile (. zf proj ect . xn) is aso updated to reflect the latest changes to the project.

The generated About Controller.php (located in application/controllers/) contans the
following contents:

<?php
cl ass About Control |l er extends Zend_Control | er_Action
{
public function init()
{
/* Initialize action controller here */
}
public function indexAction()
{
/] action body
}
}

First and foremost, note that the controller extends the zend_Control | er_Acti on class. In doing
s0, the controller class will be endowed with the specia characteristics and behaviors necessary to
function within the Zend Framework environment. One such special characteristic istheinit()

Easy PHP Websites with the Zend Framework 33

method, located at the top of the class. This method will execute prior to the execution of any action
found in the controller, meaning you can usei ni t () toinitialize parameters or execute tasks which
are relevant to more than one action.

You'll aso find amethod named | ndexAct i on. When generating anew controller thisaction and its
corresponding view (named i ndex. pht m) will also be created. The index action is special because
the Zend Framework will automatically refer to it when you accessthe controller viathe browser with
no corresponding action. For instance, if you were to access htt p: / / dev. ganenomad. cont about ,
the About controller'si ndex action will automatically execute. If you want zf to skip creating an
i ndex Vview, pass a second parameter of 0 tothecreate control | er command, like so:

%zf create controller About O

Navigate to http://dev. ganenomad. conf about / and you'll see that the About controller has
indeed been created, along with an corresponding view which contains some placeholder text.
Consider openingi ndex. pht m (locatedinappl i cati on/ vi ews/ scri pt s/ about /) and replacing the
placeholder text with some background information about your website. Remember that in your
view you can use HTML, so format the information however you please.

Creating Actions

Y ou can add an action to an existing controller using thecr eat e acti on command. For instance, to
add an action named cont act to the About controller, use the following command:

%zf create action contact About

The default behavior of this command is to also create the corresponding cont act . pht mi view. To
override this default, pass athird parameter of o like so:

%zf create action contact About O

Creating Views

You can usethecreate vi ewcommand to create new views. At the time of writing, this command
works a bit differently than the others, prompting you for the controller and action:

%zf create view

Pl ease provide a value for $control | er Nane

zf > About

Pl ease provide a value for $acti onNameOr Si npl eNane
zf > cont act

Easy PHP Websites with the Zend Framework 34

‘ Updating project profile '/var/ww dev. gamenomad. coni . zf proj ect . xm '

Keepinmind thiscommand only createstheview. If you want to create an action and acorresponding
view, usethecreate acti on command.

Passing Data to the View

Recall that the view's primary purpose is to display data. This data will typically be retrieved
from the model by way of the corresponding controller action. To pass data from the action to its
corresponding view you'll assign the data to the $t hi s- >vi ew object from within the action. For
instance, suppose you wanted to associate a specific page title with the About controller's i ndex
action. The relevant part of that action might look like this:

public function indexAction()

{
}

$t hi s->vi ew >pageTitle = "About GaneNonad";

With this variable defined, you'll be able to reference it within your view like this:

‘ <title><?= $this->pageTitle; ?></title>

Retrieving GET and POST Parameters

The dynamic nature of most websitesis dependent upon the ability to persist dataacrossrequests. For
instance a video game console name such as ps3 might be passed as part of the URL (e.g. http://
dev. gamenomad. conl games/ consol e/ ps3). The requested page could use this parameter to consult
a database and retrieve a list of video games associated with that console. If a visitor wanted to
subscribe to your newsletter, then he might pass his e-mail address through an HTML form, which
would then be retrieved and processed by the destination page.

Data is passed from one page to the next using one of two methods, either viathe URL (known as
the GET method) or as part of the message body (known as the POST method). I'll spare you the
detailed technical explanation, however you should understand that the POST method should always
be used for requests which add or change the world's "state", so to speak. For instance, submitting a
user registration form will introduce new data into the world, meaning the proper method to use is
POST. On the contrary, the GET method should be used in conjunction with requests which would
have no detrimental effect if executed multipletimes, such as aweb search effected through a search
engine. Forms submitted using the GET method will result in the data being passed by way of the
URL. For instance, if you head on over to Amazon.com and search for abook, you'll see the search
keywords passed along on the URL.

Easy PHP Websites with the Zend Framework 35

The distinction is important because forms are often used to perform important tasks such as
processing a credit card. Browser developers presume such forms will adhere to the specifications
and be submitted using the POST method, thereby warning the user if he attemptsto rel oad the page
in order to prevent the action from being performed anew (in this case, charging the credit card a
second time). If GET was mistakenly used for this purpose, the browser would logically not warn the
user, allowing the page to be reloaded and the credit card potentially charged again (I say potentially
because the developer may have built additional safeguards into the application to prevent such
accidents). Given the important distinction between these two methods, keep the following in mind
when building web forms;

» Use GET when the request results in an action being taken that no matter how many times it's
submitted anew, will not result in a state-changing event. For instance, searching a database
repeatedly will not affect the database's contents, making a search form a prime candidate for the
GET method.

» Use POST when the request results in a state-changing event, such as a comment being posted to
ablog, acredit card being charged, or a new user being registered.

In the sections that follow I'll show you how to retrieve data submitted using the GET and POST
methods. Understanding how this is accomplished will be pivotal in terms of your ability to build
dynamic websites.

Retrieving GET Parameters

The Zend Framework's default routing behavior follows a simple and intuitive pattern in which the
request's associated controller and action are specified within the URL. For instance, consider the
following URL:

http://dev. ganmenonad. com ganes/ | i st/ consol e/ ps3

The framework's default behavior in this instance would be to execute the Ganes controller's| i st
action. Further, a GET parameter identified by the name consol e has been passed and is assigned
the value ps3. To retrieve this parameter from within the 1i st action you'll use a method named
get Par an() which isassociated with aglobally available _r equest object:

‘ $consol e = $this->_request - >get Paran(' consol e');

If the i st action was capable of paging output (see Chapter 6 for more information about
pagination), you might pass the current page number along as part of the URL :

‘ http://dev. ganenonad. com ganes/ | i st/ consol e/ ps3/ page/ 4

Easy PHP Websites with the Zend Framework 36

The framework supports the ability to pass along as many parameters as you please, provided each
follows the pattern of / key/ val ue. Because the above URL follows this pattern, retrieving both the
consol e and page valuesistrivial:

$consol e = $this->_request->get Paran(' consol e');
$page = $t hi s->_request - >get Paran(' page');

Retrieving POST Parameters

Although Chapter 5 is dedicated to forms processing, the matter of passing form data from one
action to another is of such fundamental importance that | wanted to at least introduce the syntax in
this early chapter. The syntax is only dightly different from that used to retrieve a GET parameter,
involving the _request object's get Post () method. For example, suppose you wanted to provide
visitors with a simple contact form which can be used to get in touch with the GameNomad team.
That form syntax might look like this:

<form acti on="/about/contact" net hod="post">

<l abel for="emuil">Your E-mail Address:</|abel >

<i nput type="text" nanme="email" val ue="" size="25" />

<l abel for="nmessage">Your Message: </ | abel >

<t ext area nane="nessage" col s="30" rows="10"></textarea>

<i nput type="submit" nanme="subnit" val ue="Contact Us!" />

</ forne

The form's action points to the About controller's cont act method, meaning the form data will be
made available to this action once the form has been submitted. The form method is identified as
POST , so to retrieve the data, you'll usethe _r equest object's get Post () method as demonstrated
here:

$emmi | = $this-> request->getPost('ennil");
$message = $this->_request->get Post (' nessage');

Keep in mind that the get Post () method does not filter nor validate the form datal The Zend
Framework offers a powerful suite of input validation features which I'll introduce in Chapter
5, aong with a much more efficient way to create forms and process data than the approach
demonstrated here.

Creating Custom Routes

Asyou've seen throughout this chapter, the Zend Framework employsastraightforward and intuitive
routing processin which the URL's composition determineswhich controller and action will execute.

Easy PHP Websites with the Zend Framework 37

This URL may also be accompanied by one or more parameters which the action may accept as
input. To recap this behavior, consider the following URL:

htt p://dev. ganenomad. coni ganes/ vi ew asi n/ BOOOTG530M

When this URL is requested, the Zend Framework's default behavior is to route the request to the
Garres controller'svi ewaction, passing along aGET parameter named asi n which has been assigned
the value B000TGE30M But what if you wanted the URL to look like this:

‘ http://dev. gamenonad. com ganes/ BOOOTG530M

Tip

The parameter asin stands for Amazon Standard Identification Number, which uniquely
identifies products stored in the Amazon.com product database. See Chapter 10 for more
information about how GameNomad retrieves video game data from Amazon.com.

It's possible to allow this URL to continue referring to the Ganes controller'svi ew action by creating
a custom route. You can use the Zend Framework's custom routing feature to not only override
the framework's default behavior, but also to set default parameter values and even use regular
expressions which can route requests to a specific controller action whenever the defined expression
pattern is matched.

To create a custom route open the Boot st rap. php file, located in your project's appl i cation
directory. You might recall that earlier in the chapter | mentioned the Boot st rap. php file was
useful for initializing data and other resources specific to your website, including custom routes.
TheBoot st rap. php file'sbehavior is atad unusual, as any method embedded within the Boot st r ap
classfoundinthisfilewill automatically execute with each invocation of the framework (with every
request). Further, these method names must be prefixed with _i ni t, otherwise they will be ignored.
Thereforein order for the custom routes to work, you'll need to embed them within an appropriately
named method named _i ni t Rout es, for instance.

Let's create a custom route which makes it very easy for users to login by navigating to http: //
dev. ganenomad. cont | ogi n. Doing sowill actually result in the execution of the Account controller's
I ogi n action (which we'll talk about in detail in Chapter 8). The code is presented next, followed
by an explanation:

01 public function _initRoutes()

02 {

03 $front Control |l er = Zend_Control |l er_Front::getlnstance();
04 S$router = $frontController->getRouter();

05

06 $route = new Zend_Control |l er _Router_Route_Static (

Easy PHP Websites with the Zend Framework 38

07
08
09
10
11
12

"login',
array('controller' => '"Account', 'action' => 'login')
)
$rout er - >addRout e(' | ogi n', $route);
}

Let'sreview each line of this example:

Line 01 defines the method used to host the custom route definitions. Y ou can name this method
anything you please, provided it is prefixed with _i ni t .

Lines 03-04 retrieve an instance of the framework router. This is needed because we'll append
the custom routes to it so the framework is aware of their existence. Y ou only need to execute
these two lines once regardless of the number of custom routes you create, typically at the very
beginning of the method.

Lines 06-09 define a satic custom routee. A custom route of type
Zend_Control | er_Rout er _Route_St ati c ispreferable for performance reasons when no regular
expression patterns need to be evaluated. The constructor acceptstwo parameters. Thefirst, found
on Line 07, defines the custom route, while the second (Line 08) determineswhich controller and
action should be executed when this route is requested.

Line 11 activates the route by adding it to the framework router's list of known routes. The first
parameter of the addRout e() method assigns a unique name to this route. Be sure that each route
is assigned a unique name, otherwise naming clashes will cause the previously defined route to
be canceled out.

After saving theBoot st r ap. php file, you should be ableto navigatetoht t p: / / dev. ganenomad. cont
login and be served the placeholder text found in the Account controller's I ogi n action's
corresponding view (obviously you'll need to create this action if you haven't already done so).

Defining URL Parameters

This section's opening exampl e discussed streamlining the URL by removing the explicit referral to
thevi ewaction. Thisis easily accomplished using a custom route which overrides the framework's
default behavior of presuming the action name appears after the controller within the URL. Because
aminimal level of pattern matching is required to identify the parameter location, we can no longer
use the zend_Control | er_Router _Route_Static custom route class, and instead need to use the

Ze

nd_Control | er _Rout er _Rout e class. The custom route which satisfies the goal of removing the

reference to the vi ew action follows:

Easy PHP Websites with the Zend Framework 39

$route = new Zend_Control | er_Router_Route (
' ganes/:asin/',
array('controller' =>"'Ganes',
"action' => "view
)
)i

$rout er - >addRout e(' gane-asi n-view , $route);

Notice how the parameter location is prefixed with a colon : asi n). With the parameter name
and location within the route defined, you can retrieve it from within the vi ew action using the
get Par an() method introduced in the previous section:

$asin = $t hi s- >get Request () - >get Paran(' asin');

It's also possible to define default parameter values should they not be defined within the URL.
Although this feature is particularly useful for values such as dates and page numbers, it can
be applied to any parameter, including the game ASIN. For instance, suppose you modified the
previously used route to include the parameter name asi n, and wanted to set this route to a default
ASIN value should the user somehow delete it from the URL. You can set a default asi n value
within the custom route definition:

$route = new Zend_Control | er_Router_Route (
' ganes/ asin/:asin',
array('controller' =>"'Ganes',
"action' => "view,
"asin' => ' BOOOTG530M
)
)

$rout er - >addRout e(' ganme- asi n-view , $route);

Once defined, any attempt torequest ht t p: / / dev. ganenonad. conf ganes/ asi n/ (noticethemissing
ASIN), will result in the asi n parameter being popul ated with the string B000TG530M

Thissection really only scratchesthe surfacein terms of what you can do with the Zend Framework's
custom routing feature. Be sure to check out the Zend Framework manual for acomplete breakdown
of what's possible.

Testing Your Work

Testing is such an important part of the devel opment processthat | didn't want to treat the topic asan
afterthought. At the sametime, it seemsillogical to put the cart before the horse and discussthefairly

Easy PHP Websites with the Zend Framework 40

complicated topic of the Zend Framework's Zend Test testing component before acquainting you
with the framework'sfundamentals. Regardless, | didn't want to decouple the testing discussion from
the other topics discussed throughout this book, and so have opted to conclude each chapter with a
section covering testing strategiesrelevant to the chapter's subject matter. If you don't yet understand
how to configure Zend_Test, no worries, just skip these sections until you've read Chapter 11, and
then return to each section as desired.

Many of these tests are purposefully pedantic, with the goal of showing you how to cut awide swath
when testing your application. There will probably never be a need to even execute some of the
testsas | present them, such asthefirst test which merely verifies controller existence, however the
syntax found within each test could easily be combined with othersto form useful testing scenarios.
Ultimately, in regards to these sections each chapter will build upon what you'velearned in previous
chapters in order to provide you with a well-rounded understanding of how to create tests to suit
your specific needs.

Verifying Controller Existence

To test for controller existence, you'll want to send (dispatch) arequest to any route mapped to the
desired controller, and then use the assert Control | er () method to identify the controller name:

public function testDoesAccount ControllerExist()

{
$t hi s->di spat ch('/about");
$t hi s->assert Control | er (' about');

}

Verifying Action Existence

To test for the existence of an action, you'll usethe assert Acti on() method, identifying the name
of the action which should be served when the specified route is dispatched. Rather than separately
test for the existence of controller and action, consider bundling both tests together, as demonstrated
here:

public function testDoesAccount | ndexPageExi st ()
{
$t hi s->di spatch('/about"');
$t hi s->assert Control | er (' about');
$t hi s->assert Action('index');

Easy PHP Websites with the Zend Framework 41

Verifying a Response Status Code

A resource reguest could result in any number of events, such as a successful response, aredirection
to another resource, or the dreaded internal server error. Each event is associated with a response
code which is returned to the client along with any other event-driven information. For instance, a
successful response will include the requested information and a response code of 200. An internal
server error will return a response code of 500. You can test to ensure your actions are properly
responding to arequest by verifying the response code using the asser t ResponseCode() method:

public function testDoesAccount | ndexPageExi st AndRet ur n200ResponseCode()
{
$t hi s->di spat ch(' /about');
$t hi s->assert Control | er (' about');
$t hi s->assert Action('index');
$t hi s- >assert ResponseCode(200) ;

}

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

e What command-line tool is used to generate a Zend Framework project structure?

» What file should you never remove from the project directory, because it will result in the
aforementioned tool not working properly?

» What isavirtua host and why does using virtual hosts make your job as a developer easier?

» What two files are found in the publ i ¢ directory when anew project is generated? What are the
roles of these files? What other types of files should you place in this directory?

Chapter 3. Managing Layouts,
Views, CSS, Images and
JavaScript

While agreat deal of attention is devoted to compelling features such as web services integration,
the lion's share of productivity stems from the Zend Framework's ability to manage more mundane
details such as configuration dataand website assets such astemplates, CSS, images, and JavaScript.
Thelack of attention isunfortunate given the enormous amount of time and effort you and your team
will spend organizing these resources over the course of a project's life cycle.

In this chapter I'll break from this pattern by introducing you to many of the Zend Framework's
asset management features, beginning with showing you how to effectively manage your website
templates (referred to as layouts in Zend Framework vernacular), as well as override the default
behaviors of layoutsand views. Y ou'll also learn about the framework's view helpers, and even learn
how to create custom view helpers, which can go along way towards keeping your code DRY . Next,
welll talk about several native features which can help you manage your website images, CSS, and
JavaScript. Finally, the chapter concludes with a variety of example tests which can help you to
avoid common implementation errors.

Managing Your Website Layout

One common approach to managing website layouts involves creating a series of files with each
containing a significant portion of the site, such as the header and footer. Several requi re_once
statements are used within each page to include the header and footer, which when requested results
in the entire page being assembled by the PHP scripting engine. However this approach quickly
becomestedious because of theinherent difficultieswhich arise dueto breaking HTML and scripting
elements across multiple files.

The Zend Framework offers afar more convenient solution which allows you to manage a website
layout within asinglefile. Thisfile containsthe site'sheader, footer, and any other datawhich should
be made available within every page. Each time a page is requested, the framework will render
the layout, injecting the action's corresponding view into the layout at a predefined location. I'll
talk about precisely where that location isin a moment. First you'll need to enable the framework's
layout feature for your application by executing the following command from the application's root
directory:

Easy PHP Websites with the Zend Framework 43

%zf enabl e | ayout

Layouts have been enabl ed, and a default |ayout created at

[var / ww/ dev. ganenonad. cont appl i cati on/ | ayout s/ scri pts/| ayout . pht ni
A layout entry has been added to the application config file.

As the command output indicates, the layout file is named I ayout . pht i and it resides in the
directory appl i cation/ | ayout s/ scri pts/ . Open thisfile and you'll seeasingleline:

<?php echo $thi s->l ayout ()->content; ?>

This is the location where the action's view will be injected into the layout. Therefore you can add
your site's global page elements simply by building around this command. For instance, one of the
first things you'll probably want to do is add the standard HTML header and closing tags:

<htm >

<head>

<title>GanmeNomad</title>

</ head>

<body>

<h1>Weél cone to GaneNomad</ h1>

<?php echo $thi s->l ayout ()->content; ?>
<p>

Questions? Contact the GaneNormad team at support @anenonmad. coml
</ p>

</ body>

</htm >

Once saved, navigate to any page within your site and you'll see that the header and footer are now
automatically added, as depicted in Figure 3.1.

Easy PHP Websites with the Zend Framework 44

Welcome to GameNomad

Welcome to the Zend
Framework!

This is vour project's main page

Fi
Helplul Links:

Questions? Contact the Gamelomad team at support@oemenomad. cam!

Figure 3.1. Using the Zend Framework's layout feature

Using Alternative Layouts

Although the typical website embracesaparticul ar designtheme, it's common to use multiplelayouts
in order to accommodate the organization of different data sets. Consider for instance the layout of
any major mediawebsite. The site's home page and several of the category home pages might use a
three-column layout, whereas the pages which display an article employ a two-column layout. Y ou
can change an action's layout file by retrieving an instance of the layout using a feature known as
the helper broker, and then calling the set Layout () method, passing in the name of the alternative
layout:

$l ayout = $t his->_hel per->layout();
$l ayout - >set Layout (' t hree-col um') ;

Like the default layout, any alternative layout should aso reside in the appl i cation/ | ayout s/
scripts/ directory, and should usethe. pht i extension.

Easy PHP Websites with the Zend Framework 45

If you wanted to change the layout for all actionsin aparticular controller, just insert the above two
lines into the controller'si ni t () method, which will execute prior to the invocation of any action
found in the controller. See the last chapter for more information about thei ni t () method.

Disabling the Layout

To prevent the layout from rendering, call the di sabl eLayout () helper at the top of the action:

‘ $t hi s->_hel per - >l ayout () - >di sabl eLayout () ;

Keep in mind that disabling the layout will not disable the action's corresponding view. If you want
to create an action which neither renders a layout nor a view, you'll also need to explicitly disable
the view. You'll learn how to disable an action's view in the later section "Disabling the View".

Tip

If you would like to disable the layout and view in order to process an AJAX request,
then chances are you won't need to call either of these helpers because the framework's
encodeJson() helper will automatically disable rendering of both for you. See Chapter 9
for more information about processing AJAX requests.

Managing Views

When a controller action is invoked, the Zend Framework's default behavior is to look for an
appropriately named action to return as the response. However, there are situations which you might
wishto override thisdefault behavior, either by using adifferent view or by disabling view rendering
altogether.

Overriding the Default Action View

By default the framework will search for aview script named identically to the action being invoked.
For instance, if the About controller's contact action is called, then the framework will expect
an action named cont act. pht i to exist and reside in the appl i cati on/ vi ews/ scri pt s/ about
directory. You can override this behavior by passing the name of a different controller into the
render () helper:

$t hi s->vi ew->render (' al ternate. phtnl');

If the view script residesin adirectory different than that where the currently executing controller's
views reside, you can change the view script path using the set Scri pt Pat h() method:

Easy PHP Websites with the Zend Framework 46

$t hi s->vi ew >set Scri pt Pat h(' / appl i cati on/ scri pts/ nobi | e/ about/");
$t hi s->vi ew->render (' contact. phtnml');

Disabling the View

Should you need to prevent an action's view from being rendered, add the following line to the top
of the action body:

‘ $t hi s->_hel per->vi ewRender er - >set NoRender (true);

Presumably you'll also want to disable the layout, therefore you'll aso need to call the
di sabl eLayout () helper asintroduced earlier in this chapter:

$t hi s->_hel per - >l ayout () - >di sabl eLayout () ;
$t hi s->_hel per - >vi ewRender er - >set NoRender () ;

View Helpers

The Zend Framework supports a feature known as a view helper which can be used to manage the
placement and formatting of awide variety of site assets and other data, including page titles, CSS
and JavaScript files, images, and even URLS. Y ou can even create custom view helpers which can
beimmensely useful for minimizing the amount of repetitivelogic which would otherwise be spread
throughout the view templates. In this section I'll introduce you to one of the framework's most
commonly used view helpers, and even show you how to create your own. Later in the chapter I'll
introduce other native view helpers relevant to managing your site's CSS, JavaScript, and other key
page elements.

Managing URLS

The framework supports a URL view helper which can be used to programmatically insert URLs
into a page. For instance, suppose you wanted to create a hyperlink which points to http://
dev. gamenonad. cont ganes/ pl at f or mi consol e/ ps3. Using the URL view helper within your view,
you'll identify the controller, action, and lone parameter like this:

<a href="<?= $this->url (array(
‘controller' =>"'ganes',
"action' => 'platform,
‘console' => 'ps3')); ?>">View PS3 ganes

Executing this code will result in a hyperlink being added to the page which looks like this:

Easy PHP Websites with the Zend Framework 47

Vi ew PS3 ganes</ a>

But isn't this more trouble than its worth? After all, writing the hyperlink will actually require less
keystrokesthan using the URL view helper. The primary reason you should usethe URL view hel per
is for reasons of maintainability. What if you created a site which when first deployed was placed
within the web server's root document directory, but as the organization grew needed to be moved
into a subdirectory? This location change would require you to modify every link on the site to
accommodate the new location. Yet if you were using the URL view helper, no changes would be
necessary because the framework is capable of detecting any changes to the base URL.

The secondary reason for using the URL view helper isthat it's possible to reference a custom named
route within the helper instead of referring to a controller and action at al, allowing for maximum
flexibility should you later decideto point the custom route el sewhere. For instance, you might recall
the custom route created in the last chapter which allowed us to use a more succinct URL when
viewing information about a specific game. This was accomplished by eliminating the inclusion
of the action within the URL, allowing us to use URLS such as http://dev. gamenonad. conl
games/ BOOOTG530M rather than ht t p: / / dev. gamenonad. conf ganes/ asi n/ BOOOTG530M To refresh
your memory, the custom route definition isincluded here:

$route = new Zend_Control | er _Router _Route (
' ganes/ asin/:asin',
array('controller' =>"'Ganes',
"action' => 'view,
"asin' => ' BOOOTG530M
)
)

$r out er - >addRout e(' gane- asi n-view , $route);

Notice how the name garre- asi n- vi ew iS associated with this custom route when it's added to the
framework'srouter instance. Y ou can pass this unique name to the URL view helper to create URLSs:

<a href="<?= $this->url (array(
‘asin' => 'B000TG530M),
'gane-asin-view); ?>">Call of Duty 4: Mdern Warfare

Executing this code will produce the following hyperlink:
http://dev. ganmenonad. com ganes/ BOOOTG530M

Table 3-1 highlights some of the Zend Framework's other useful view helpers. Keep in mind that
thisisonly apartial listing. Y ou should consult the documentation for a complete breakdown.

Easy PHP Websites with the Zend Framework 48

Table 3.1. Useful View Helpers

Name Description

Currency Displays currency using alocalized format

Cycle Alternates the background color for a set of values

Doctype Simplifies the placement of a DOCTY PE definition within an
HTML document

HeadLink Linksto external CSS files and other resources, such as favicons
and RSS feeds

HeadMeta Defines metatags and setting client-side caching rules

HeadScript Adds client-side scripting elements and links to remote scripting
resources. You'll learn more about this helper later in the chapter

HeadStyle Adds CSS declarations inline

Creating Custom View Helpers

You'll often want to repeatedly perform complex logic within your code, such asformatting a user's
birthday in a certain manner, or rendering a certain icon based on a preset value. To eliminate the
redundant insertion of this code, you can package it within classes known as custom view helpers,
and then call each view helper as necessary.

To create a custom view helper, you'll create a new class which extends the framework's
Zend_Vi ew_Hel per _Abstract class. For instance, the following helper is used on the GameNomad
website in order to easily associate the appropriate gender with the user's gender designation:

01 <?php
02

03 cl ass Zend_Vi ew_Hel per _Gender extends Zend_Vi ew_Hel per _Abstract

04 {
05

06 /
07

08

09

10

11

12 *)

*

E R

Produces string based on whether value is
mascul i ne or feninine

@aram string $gender

@eturn string

13 public function Gender ($gender)

14 {
15

Easy PHP Websites with the Zend Framework 49

16 if ($gender == "ni') {
17 return "he";
18 } else {

19 return "she";
20 }

21

22 }

23

24 }

25

26 ?>

The code breakdown follows:
* Line 03 definesthe helper class. Notice the naming convention and format used in the class name.

* Line 13 defines the class method, Gender (). This method must be named identically to the
concluding part of your class name Gender , in this case). Likewise, the helper's file name must
be named identically to the method, include the . php extension Gender . php, and be saved to the
appl i cati on/ vi ews/ hel per s directory.

Once created, you can execute the helper from within your views like so:

Jason owns 14 ganes, and <?= $this->Gender("n{'); ?>is
currently playing Call of Duty: World at War.

Partial Views

Many web pages are built from snippets which are found repeatedly throughout the website. For
instance, you might insert information about the best selling video game title within a number of
different pages. The HTML might look like this:

<p>
Best-sel ling gane this hour:

Call of Duty: Black Ops
</ p>

So how can we organize these templates for easy reuse? The Zend Framework makes it easy to do
so, calling them partials. A partial is atemplate which can be retrieved and rendered within a page,
meaning you can use it repeatedly throughout the site. If you later decide to modify the partial to
include for instance the current Amazon sales rank, the change will immediately occur within each
location the partial is referenced. Let's turn the above snippet into a partial:

<p>
Best-selling ganme this hour:

Easy PHP Websites with the Zend Framework 50

<a href="/ganmes/title/<?= $this->permalink;?>"><?= $this->title; ?>
</ p>

However partials have an additional useful feature in that they can contain their own variables and
logic without having to worry about potential clashing of variable names. Thisis useful because the
variables$t hi s- >per mal i nk and $t hi s- >t i t1 e may already exist in the page calling the partial, but
because of this behavior, we won't have to worry about odd side effects.

For organizational purposes, | prefix partial file names with an underscore, and store them
within the appl i cat i on/ vi ews/ scri pt s directory. For instance, the above partial might be named
_hot t est gane. pht mi . To insert a partia into aview, use the following call:

<?= $this->partial (' _hottestganme. phtm ',
array(' permalink' => $gane->getPermalink(), 'title => $game->getTitle())); ?>

Notice how each key in the array corresponds to a variable found in the referenced partial.

The Partial Loop

The Zend Framework offersavariation of the partial statement useful for looping purposes. Revising
the hottest game partial, suppose you instead wanted to provide a list containing several of the
hottest selling games. Y ou can create a partial which represents just one entry in the list, and use
the Parti al Loop construct to iterate through the games and format them accordingly. The revised
partial might look like this:

<a href="/ganmes/<?= $t his->asin; ?>"><?= $this->title; ?>

Using the Parti al Loop construct, you can pass along a partial and a multi-dimensional array,
prompting the loop to iterate until the array values have been exhausted:

<ul id="hottest">
<l'i ><?= $this->partial Loop(' _hottestganmes. phtm"'
array(
array('asin' => 'B0O00TG30M, 'title' => 'Call of Duty 4: Mddern Warfare'),
array('asin' => 'BOOOFRULUM , 'title' =>'Gand Theft Auto IV'),
array('asin' => 'BOOOFRWNU , 'title' => 'Halo 3')
)
)

</[li>

Executing this partial oop within aview produces the following output:

<ul id="hottest">

Easy PHP Websites with the Zend Framework 51

<l i >Cal | of Duty 4: Mdern Warfare
<l i >Grand Theft Auto |V
Hal o 3</|i>

</ ul >

Managing Images

There really isn't much to say regarding the integration of images into your website views, as no
specia knowledge is required other than to understand that the framework will serve images from
the publ i ¢ directory. However, the Zend_Tool utility does not generate a directory intended to host
your site images when the application structure is created, so | suggest creating a directory named
i mages or similar within your publ i ¢ directory. After moving the site images into this directory,
you can reference them using the typical i ng tag:

‘

Managing CSS and JavaScript

As is the case with images, no special knowledge is required to begin integrating Cascading
Style Sheets (CSS) and JavaScript into your Zend Framework-powered website, other than the
understanding that the CSS and JavaScript files should be placed somewhere within the publ i c
directory. For organizational purposes | suggest creating directories named css and j avascri pt or
similar, and placing the CSS and JavaScript files within them, respectively.

For instance, with the directory and CSSfilesin place, you'll typically usetheHTML 1 i nk tag within
your site layout in order to make the CSS styles available:

<link rel ="styl esheet" href="/css/screen. css"
type="text/css" nedi a="screen, projection">

Testing Your Work

This chapter isprimarily devoted to user interface-specific features. Just asyou'll want to thoroughly
test the programmatic features of your website, so will you want to not only ensure that the user
interface is rendering the expected page elements, but that the application behaves properly as the
user navigates the interface. While PHPUnit was not intended to test user interfaces, the Zend_Test
component bundles several useful features which allow you to perform rudimentary user interface
tests, several of which I'll demonstrate in this section.

Before presenting the example tests, keep in mind that thorough user interface testing is much more
involved than merely verifying the existence of certain page elements. Notably, you'll want to use

Easy PHP Websites with the Zend Framework 52

atool such as Selenium which can actually navigate your website interface using any of severa
supported web browsers (among them Firefox, Internet Explorer, and Safari). In Chapter 11 you'll
learn how to configure PHPUnit to execute Selenium tests.

Verifying Form Existence

Using the assert Quer yCount () method, you can ensure that a page element is found within a
retrieved page. This is useful when you want to make sure a certain image, form, or other HTML
element has been rendered as expected. For instance, the following test ensures that exactly one
instance of aform identified by the ID I ogi n isfound within the Account controller'si ogi n view:

public function testLogi nActi onShoul dCont ai nLogi nFor n()
{
$t hi s->di spatch('/account/| ogi n')
$t hi s- >assert QueryCount (' form#l ogin', 1)
}

Verifying the Page Title

The Zend Framework offers a view helper named headTit1 e() which when output within the
view will generatethetitl e tag and insert into it the value passed to headTi t1 e() . You'll execute
headTi t| e() somewhere between the layout's head tagsin order to properly render thetitl e:

<head>
<?php echo $this->headTitl e(' Wl cone to GaneNomad'); ?>
</ head>

Executing this view helper will result in the following ti t | e tag being inserted into the layout:

<head>
<title>Wel cone to GaneNonmad</title>
</ head>

Personally, | find this feature to be superfluous, asit's just as easy to add thetit 1 e tag manualy,
and then pass the desired view title in from the associated action, like this:

<title>
<?= (!is_null ($this->pageTitle)) ? $this->pageTitle : "Wl come to GaneNonmad"; ?>
</title>

If you'd like to use a custom page title in conjunction with a specific view, al you need to do is
define $t hi s- >vi ew >pageTi t | e within the action:

Easy PHP Websites with the Zend Framework 53

public function |oginAction()

{

$t hi s->vi ew->pageTitl e = ' GaneNomad: Login to Your Account';

,

No matter which approach you take, you can execute atest which ensuresthe pagetitleis set properly
by using the asser t Quer yCont ent Cont ai ns() method:

public function testLoginVi ewShoul dCont ai nLogi nTitle()
{
$t hi s->di spat ch(' /account/| ogin');
$t hi s->assert QueryCont ent Contains('title', 'GaneNomad: Login to Your Account');

}

Testing a PartialLoop View Helper

Earlier in this chapter a convenient formatting feature known as the PartialLoop view helper was
introduced. You can use a PartialLoop to separate the presentational markup from the logic used
to iterate over an array when displaying the array contents to the browser. The example used to
demonstrate the PartialLoop view helper involved iterating over an array containing three video
games, creating a link to their GameNomad pages and inserting the link into an unordered list
identified by the ID hot t est . Y ou can create a test which verifies that exactly three unordered list
items are rendered to a page:

public function testExactl|lyThreeHot GanesAreDi spl ayed()
$t hi s->di spatch('/ganes/ pl at f or m 360") ;

$t hi s->assert QueryCount (' ul #hottest > 1i', 3);
}

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

e The Zend Framework's convenient layout feature is not enabled by default. What ZF CLI
command should you use to enable this feature?

e From which directory does the Zend Framework expect to find your website CSS, images, and
JavaScript?

Easy PHP Websites with the Zend Framework 54

e What is the name of the Zend Framework feature which can help to reduce the amount of PHP
code otherwise found in your website views?

» Which Zend Framework class must you extend in order to create a custom view helper? Where
should your custom view helpers be stored?

» Name two reasons why the Zend Framework's URL view helper is preferable over manually
creating hyperlinks?

Chapter 4. Managing
Configuration Data

Your website will likely require a fair amount of configuration-related data in order to function
properly, including database connection parameters, cache-related directory paths, and SMTP
addresses. Further, the sitemay refer to certain important bits of information which may occasionally
need to be changed, such as a support-related e-mail address. Making matters more difficult,
this configuration data may change according to the application's life cycle stage; for instance
when your website is in the development stage, the af orementioned support-related e-mail address
might be set to bugs @anenonad. com whereas when the site is public the address might be set to
suppor t @amenonmad. com You'll also want to adjust PHP-specific settings according to thelife cycle
stage such as whether to display errorsin the browser. So what's the most efficient way to manage
this data?

In the interests of adhering to the DRY principle the Zend Framework offers a great solution which
not only allows you to maintain this data in a central location, but also to easily switch between
different sets of stage-specific configuration data. In this chapter I'll introduce you to this feature
which is made available via the Zend Config component, showing you how to use it to store and
access configuration data from a central location.

Introducing the Application Configuration File

Theappl i cation.ini file(locatedintheappli cation/ confi gs directory) isthe Zend Framework's
default repository for managing configuration data. Open this file and you'll see that severa
configuration parameters already exist, using a category-prefixed dotted notation syntax similar to
that foundinyour php. i ni file. For instance, the variables beginning with phpSet t i ngs will override
any settingsfound in the php. i ni file, such asthe following variable which will prevent the display
of any PHP-related errors:

phpSettings.display_errors =0

Y ou'refreeto override other PHP directivesasyou seefit, provided you follow the above convention,
and that the directive is indeed able to be modified outside of the php.ini file. Consult the PHP
manual for more information about each configuration directive's scope.

Easy PHP Websites with the Zend Framework 56

Note

Managing your configuration data within the application.ini file forms one of two
approaches currently supported by the Zend_Config component. It's also possible to
manage this data using an XML format, and even using an external resource such as a
MySQL database. Of the three approaches the one involving INI-formatted data seems to
be the most commonly used, and so this chapter will use INI-specific examples, although
everything you learn here can easily be adapted to the other approaches.

Y ou can create your own configuration parameters, even grouping them according to their purpose
using intuitive category prefixes. For instance, | group my web service APl keys like this:

webservi ce. anazon. af fi |l i ates. key = KEY_GOES_HERE
webservi ce. amazon. ec2. key = KEY_GOES_HERE
webser vi ce. googl e. maps. key = KEY_GOES_HERE

The second way configuration parameters are organized is according to the application's life cycle
stage. For instance, notice that the phpSetti ngs. di spl ay_errors parameter is set to 0 within
the [production] section. This is because when the website is deployed in a live environment,
you don't want to display any ugly errors to the end user. If you scroll down the file to the
section [devel oprent : producti on] , you'll find the very same variable defined again, but thistime
phpSet tings. di splay_errors is set to 1 (enabled). This is because when your website is in the
development stage, you'll want to see these errorsin real-time as they occur while you develop the
site.

To save unnecessary repetition, life cycle stages can be configured to inherit from another. For
instance, the syntax [devel oprent : producti on] indicates that the development stage will inherit
any configuration variables defined within the production stage. Y ou can override those settings by
redefining the variable, as we did with the di spl ay_errors variable.

You'll also see other default variables defined in the application.ini file. For example, the
following variable identifies the location where your application controllers are found:

resources.frontController.controllerDirectory = APPLI CATI ON_PATH "/control | ers"

As you might imagine, these sorts of variables are useful if you wanted to change the Zend
Framework's default settings, although in most cases you won't need to tinker with them.
Unfortunately there's currently no definitive list of al of the available variables, however as you
exploreother features of the Zend Framework you'll undoubtedly come acrossthe variablesyou need
to add the feature. Throughout this book I'll occasionally be referencing other variables as needed.

Easy PHP Websites with the Zend Framework 57

Setting the Application Life Cycle Stage

The . ht access file introduced in Chapter 2 serves a primary role of forwarding all requests to
the front controller. However, it also serves a secondary role of providing a convenient location to
define your application's life cycle stage. For instance, to define the stage as devel opnent , open the
. ht access file (located inthe/ publ i ¢/ directory) and add the following line at the top of thefile:

Set Env APPL| CATI ON_ENV devel opnent

Once saved, the framework will immediately begin using the configuration parameters defined
within the [devel opnent] section of theapplication.ini file

Tip
You're not constrained to using solely the four default stages defined within the
application.ini file. Feel freeto add as many custom stages as your please!

Whiledefining the APPLI CATI ON_ENVinthe. ht access fileisno doubt convenient, you'll still needto
modify this variable when migrating your website from one staging server to another. Neglecting to
do so will logicaly result in unexpected consequences, such as continuing to display website errors
within the browser on your production server because you forgot to update the APPLI CATI ON_ENV
variableto pr oduct i on. Y ou can eliminate such gaffes entirely by automating the migration process
using a utility such as Phing.

Accessing Configuration Parameters

Naturally you'll want to access some of these configuration parameters within your controllers, and
in the case of end-user parameters such as e-mail addresses, within your views. There are several
different approaches available for accessing this data. In this section, I'll introduce you to each
approach, concluding with the solution which | believe to be most practical for most applications.

Accessing Configuration Data From a Controller Action

Most newcomers to the Zend Framework are happy with simply understanding how to access the
configuration data from within a controller action, which is certainly understandable although in
most cases it's the most inefficient approach because it results in duplicating a certain amount of
code each time you want to access the data from within a different action. Nonetheless it's useful to
understand how this is accomplished because if anything it will demonstrate the syntax employed
by all approaches. You can use the following command to load all parameters defined within
application.ini fileintoanarray:

Easy PHP Websites with the Zend Framework 58

$options = $this->getl|nvokeArg(' bootstrap')->getOptions()

The get I nvokeAr g() call retrieves an instance of the bootstrap object which isinvoked every time
the front controller responds to a reguest. This abject includes the get Opt i ons() method which
can be used to retrieve a multidimensional array consisting of the defined stage's configuration
parameters. For instance, you can retrieve the Google Maps API key referenced in an earlier example
using the following syntax:

echo $options[' webservices']['google'][maps']['api'];

| think the multidimensional array syntax is a bit awkward to type, and instead prefer an object-
oriented variant also supported by the Zend Framework. To use this variant, you'll need to load the
parameters into an object by passing the array into the zend_conf i g class constructor:

‘$options = new Zend_Confi g($t hi s- >get | nvokeAr g(' boot strap')->get Opti ons())

This approach allows you to use object notation to reference configuration parameters like so:

‘$googIethsApiKey = $opti ons->webser vi ces- >googl e- >maps- >api - >key;

Using the Controller's init() Method to Consolidate Code

If you plan on using configuration parameters throughout a particular controller, eliminate the
redundant calls to the get Opti ons() method by calling it from within your controller's i nit ()
method.

public function init()

{
$t hi s->opti ons = new Zend_Confi g($t hi s->get | nvokeAr g(' boot strap')->get Opti ons())
}
public function contactAction()
{
$t hi s->vi ew>enmni| = $t hi s->opti ons- >conpany->emai | - >support ;
}

Accessing Configuration Parameters Globally Using
Zend_Registry
While retrieving the options within thei ni t () method is an improvement over the first approach,

we're still not as DRY aswe'd like to be if it's necessary to access configuration parameters within
multiple controllers. Therefore my preferred approach isto automatically make the options globally

Easy PHP Websites with the Zend Framework 59

available by assigning the object returned by zend_Conf i g to avariable stored within the application
registry. Thisregistry is managed by a Zend Framework component called Zend Registry. Y ou can
use thisregistry to set and retrieve variables which are accessible throughout the entire application.
Therefore by assigning the configuration parameters object to a registry variable from within
the bootstrap, this variable will automatically be available whenever needed from within your
controllers.

Asdiscussed in the Chapter 2, tasks performed within the application bootstrap aretypically grouped
into methods, with each method appropriately named to identify its purpose. Each time the bootstrap
runs (which occurs with every request), these methods will automatically execute. Thereforeto load
the configuration object into the registry, you should create a new method within the bootstrap, and
call the appropriate commands within, as demonstrated here:

protected function _initConfig()

{
$config = new Zend_Confi g($t hi s->get Options());
Zend_Regi stry: :set('config', $config);
return $config;

}

With the configuration object now residing in aregistry variable, you'll be able to retrieve it within
any controller action simply by calling the Zend Registry component's static get method. This
means you won't have to repetitively retrieve the configuration data from within every controller
i ni t () method! Instead, you can just retrieve the configuration parameters like this:

$t hi s->vi ew >support Emai | =
Zend_Regi stry: :get (' config')->conpany->enail - >support;

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

» Which Zend Framework component is primarily responsible for simplifying the accessibility of
project configuration data from a central location?

» What isthe name and | ocation of the default configuration file used to store the configuration data?

» Describe how the configuration data organized such that it is possible to define stage-specific
parameters.

» What isthe easiest way to change your application's life cycle stage setting?

Chapter 5. Creating Web Forms
with Zend _Form

When | wasfirst acquainted with the Zend Framework back in 2008, the Zend_Form component was
thelonefeature which | was convinced was a horribly misguided implementation. | ssmply could not
understand why any sane developer would want to programmatically generate HTML forms when
they are so easy to write manually.

Asit turnsout, it was | who was horribly misguided. While HTML forms can indeed be created in
mere minutes, the time and effort required to write the code used to populate, process, validate, and
test these forms can be significant. It is here where Zend_Form's power is apparent, asit can greatly
reduce the time and effort needed to carry out these tasks. Further, you won't lose any control over
the ability to format and stylize forms!

In my experience Zend_Form is the most difficult of the Zend Framework's components, largely
because of the radical shift towards the programmatic creation of forms. Therefore you'll likely
need to remain patient while making your first forays into creating and validating forms using this
component. I'll do my best to guide you through the process and make you aware of potential gotchas
as we work through the chapter.

Caution

While this chapter will indeed provide a detailed introduction to zend_For m I've decided
to spend little time talking about the many rendering options at your disposal. Instead, I'm
going to focus upon what | believe to be the rendering solution which will appeal to the
vast mgjority of readers who wish to balance Zend Form's convenient form processing
and validation features with the ability to maintain control over the form's layout and
styling. However, in order to ensure you fully understand many of the most confusing
issues surrounding zend_For ms approach to rendering forms, several of this chapter's early
examples will employ atrial-and-error approach, showing you how the form's appearance
changes with each iteration.

Creating a Form with Zend_Form

You'll use Zend Form's class methods to not only create the form, but also validate form data and
even determine how the form is presented to the user. To create aform you'll invoke the zend_For m

Easy PHP Websites with the Zend Framework 61

class, create the form field objects using avariety of classes such as zend_For m El enent _Text , and
then add those form field objects to the form using methods exposed through the zend_For mclass.

I'd imagine this sounds pretty elementary, however there's a twist to the approach which causes a
great deal of confusion among newcomersto framework-driven development. Y ou'll actually want to
encapsulate each form within amodel! Thisis a preferable approach because the model can contain
all of the functionality required to manage the form data and behavior, not only resulting in easier
maintainability but also allowing you to easily reuse that model within multiple applications. Let's
use this approach to create the model used to sign registered GameNomad users into their accounts.

Begin by using the ZF CLI to create the model. Y ou're free to name the model however you please,
although | suggest choosing a name which clearly identifies the model as a form. For instance |
preface all form-specific models with the string For m (for instance For nLogi n, For nRegi st er, and
For nFor get Passwor d):

%zf create nodel Fornlogin
Creating a nodel at /var/ww/ dev. gamenomad. coni appl i cati on/ nodel s/ For nLogi n. php
Updating project profile '/var/ww dev. gamenomad. coni . zf proj ect . xm '

Next open up the For nLogi n. php file, located in the directory appl i cati on/ model s/, and add a
constructor method containing the following elements (also note that the class definition has also
been modified so that it extends the zend_For mclass:

01 <?php

02

03 cl ass Application_Mdel _Formnlogi n extends Zend_Form
04 {

05

06 public function __construct($options = null)

07 {

08

09 parent::__construct ($options);

10 $t hi s->set Nane(' | ogin');

11 $t hi s->set Met hod(' post');

12 $t hi s->set Action('/account/login');

13

14 $emai | = new Zend_Form El enent _Text (' enmil");
15 $emai | ->set Attrib('size', 35);

16

17 $pswd = new Zend_For m El enent _Passwor d(' pswd') ;
18 $pswd- >set Attrib(' size', 35);

19

20 $submit = new Zend_Form El enent _Submi t (' subnmit');
21

22 $t hi s->set Decorators(array(array('ViewScript',

Easy PHP Websites with the Zend Framework 62

23
24
25
26
27
28
29

array('viewScript' =>"'_formlogin.phtm'))));
$t hi s- >addEl enents(array($enmai |, $pswd, $subnit));
}
}

Let'sreview this example:

Line 03 definesthe model. Note how this model extendsthe zend_For mclass. When you generate
amodel using the zf toal, this extension isn't done by default so you'll need to add the extension
syntax manually.

Line 06 defines a class constructor method. All of the remaining code found in this example is
encapsulated in this constructor because we want the code to automatically execute when the
model object is created within the controller. Note how this constructor can also accept a lone
parameter named $opt i ons. I'll talk more about the utility of this parameter in the section "Passing
Options to the Constructor”.

Line 09 calls the class parent constructor, which is required in order to properly initiaize the
Appl i cati on_Nbdel _For niogi n class.

Line 10 defines the form's name, which can be used to associate CSS styles and Ajax-based
functionality. Line 11 defines the form method, which can be set to get or post . Line 12 defines
the form action, which points to the URL which will process the form data. In order to ensure
maximum model portability, you may not want to hard wire these values and instead want to pass
them through the constructor. I'll show you how this is done in the section "Passing Options to
the Constructor”.

Lines 14 and 15 define the text field which will accept the user's e-mail address. Theenwai | value
passed into the zend_For m El ement _Text constructor will be used to set the field's nane.

Lines 17 and 18 define the password field which will accept the user's password. The
Zend_Form El enent _Password class is used instead of zend_For m El enent _Text because the
former will present atext field which masks the password as the user entersit into the form.

Line 20 defines a submit field used to represent the form's subni t button.

Lines 22-23 defines the view script which will be used to render this form. I'll talk more about
thisform in the next section.

Easy PHP Websites with the Zend Framework 63

e Line 25 adds all of the form elements defined in lines 12-18 to the form object. It isalso possible
to add each separately using the addEel ement () method however using addel ement s() will save
you afew keystrokes.

Notice how this model places absolutely no restrictions on how the form will actually be presented
to the user, other than to reference a script named _f or m | ogi n. pht i which contains the form's
formatting instructions (more on this in the next section). Let's move on to learn how the form is
rendered.

Rendering the Form

To render aform, all you need to do is instantiate the class within your controller, and then assign
that object to a variable made available to the view, as demonstrated here:

public function | ogi nAction()

{
$f orm = new Appl i cati on_Mbdel _Forniogin();

$t hi s->view->form = $form

Within the appl i cati on/ vi ews/ account / | ogi n View you'll need to echo the $t hi s- >vi ew:

<?= $this->form 2>

Finally, createthefile named _f or m | ogi n. pht m (placing it within appl i cati on/ vi ews/ scri pt s)
which was referenced within the For mLogi n model. This file is responsible for rendering the form
exactly asyou'd like it to appear within the browser.

<formid="login" action="<?= $this->el ement->getAction(); ?>"
net hod="<?= $t hi s- >el enent - >get Met hod(); ?>">

<p>

E-mai | Address

<?= $thi s->el enent ->emai | ; ?>
</ p>

<p>

Passwor d

<?= $t hi s->el enent - >pswd; ?>
</ p>

<p>
<?= $thi s->el enent - >subm t; ?>

Easy PHP Websites with the Zend Framework 64

</ p>

</forne

Calling ht t p: / / dev. ganenomad. conf account / | ogi n within the browser, you should see the form
presented in Figure 5.1.

E-mail Address

Password

Login

Figure5.1. Creating aform with Zend_Form

The form rendered just fine, however you might notice that the spacing seems a bit odd. To
understand why, useyour browser's View Sour cefeature to examinetheform HTML. |'vereproduced
it here for easy reference:

<formid="1ogin" action="/account/|ogin" method="post">

<p>

E-nai | Address

<dt id="email -|abel ">& </ dt >

<dd id="email - el ement" >

<input type="text" name="email" id="email" value="" size="35"></dd></p>
<p>

Passwor d

<dt id="pswd-| abel ">& </ dt >

<dd i d="pswd- el enent " >

<i nput type="password" nanme="pswd" id="pswd" val ue="" size="35"></dd></p>

<p>
<dt id="submt-I|abel">& </ dt><dd i d="subnit-el ement">

<input type="submit" name="subnmit" id="submit" val ue="Logi n"></dd></p>

</ forne

Easy PHP Websites with the Zend Framework 65

Wheredid all of thosedt and dd tags come from? They are present because Zend_Form is packaged
with anumber of default layout decoratorswhich will execute evenif you defineaview script within
the model. A decorator is a design pattern which makes it possible to extend the capabilities of an
object. In the case of Zend Form, these decorators determine how each form field will be rendered
within the browser. Why the developers chosethedt and dd tagsover othersisn't clear, although one
would presume it has to do with the ability to easily stylize these tags using CSS. Even so, | doubt
you want these decorators interfering with your custom layout, so you'll want to suppress them.
Thisisaccomplished easily enough using ther emoveDecor at or () method. Because the decorator is
associated with each form field object, you'll need to call r emoveDecor at or () every timeyou create
aform field, as demonstrated here:

$enmi | = new Zend_Form El enent _Text ('enmil"');
$enmi | ->set Attrib(' size', 35)
->renoveDecorator (' | abel ')
->renoveDecorator (' htm Tag');

In this example I'm removing the decorator used to remove the default label formatting in addition
to the label used to format the field itself. Execute / account /1 ogi n again and you'll see the form
presented in Figure 5.2.

E-mail Address

Password

Login

Figure5.2. Removing the default Zend_Form decorators

Thisisclearly an improvement, however if you again examine the source code underlying thisform,
you'll see that the submit button is still rendered using a default decorator, even if you explicitly
removed the ht ml Tag decorator from the zend_For m El enent _Subni t object. This is because the
Zend_For m El ement _Subni t does not support the ht m Tag decorator. Instead, you'll want to remove
the Dt DdwW apper decorator:

$subm t = new Zend_Form El ement _Subm t (' submt');
$subni t - >set Label (' Login');
$submi t - >r enoveDecor at or (' Dt DdW apper ') ;

Withthischangein place, call / account / 1 ogi n anew and you'll seetheform presented in Figure5.3.

Easy PHP Websites with the Zend Framework 66

Login to Your GameNomad Account

E-mail Address
Password
Login

Figure5.3. Controlling form layout is easy after all!

This is just one approach to maintaining control over your form's presentation when using
Zend_Form, and in fact more sophisticated solutions are available. In fact, the easiest solution might
involve simply stylizing thedt and dd tags using CSS. However, for the majority of readers, present
party included, the approach described here is quite satisfactory.

Passing Options to the Constructor

I mentioned earlier in this chapter the utility of being able to reuse models across applications. In
fact, you'll probably want to reuse models several times within the same application, because of the
need to not only insert data, but also later modify it. Although multiple actions will be involved in
carrying out these tasks/ 1 ocati on/insert and/ | ocati on/ updat e for instance), there's no reason
you should maintain separate forms! Fortunately, changing the form model'sact i on setting is easy,
done by passing the desired setting through the form's object constructor:

‘$f orm = new Applicati on_Mdel Fornlocation(array('action' => '/locations/add));

You'll also need to modify the form model so that the set Acti on() method refers to the passed
associative array value rather than a hardwired setting:

‘$t hi s->set Acti on($options['action']);

Of course, you're not limited to setting solely the form action; just expand the number of associative
array keys and corresponding values as you seefit.

Processing Form Contents

Now that you know how to define aform object and render its contents, let's write the code used to
process the form input and return feedback to the user. The execution path this task takes depends
on whether the user has submitted the form:

Easy PHP Websites with the Zend Framework 67

» Form not submitted: If the form has not been submitted, render it to the browser, auto-popul ating
thefieldsif necessary.

» Form submitted: If the form has been submitted, validate the input. If any of the input is deemed
invalid, notify the user of the problem, display the form again, and populate the form with the
previously submitted input as a convenience to the user. If the form input is valid, process the
data and notify the user of the outcome.

Let's tackle each of these problems independently, and then assemble everything together at the
conclusion of the section.

Determining if the Form Has Been Submitted

The Zend Framework's request object offers auseful method called get Post () which can determine
if the incoming request has been made using the POST method. If it has, you can use the request
object's get Post () method to retrieve the input values (this method was introduced in Chapter 2).
The request object'si sPost () method returns TRUE if the request has been POSTed, and FALSE
if not, meaning you can evaluate it within an if-conditional statement, like this:

public function |oginAction()

{
$f orm = new Appl i cati on_Mddel _FornlLogin();
i f ($this->getRequest()->isPost()) {

$emai |
$pswd

$f or m >get Val ue(' enmi | ') ;
$f or m >get Val ue(*' pswd') ;

echo "<p>Your e-mail is {$email}, and password is {$pswd}</p>";

}

$t hi s->view>form = $form

}

Try executing the revised / account /| ogi n action, completing and submitting the form. When
submitted, you should see your e-mail address and password echoed back to the browser.

Easy PHP Websites with the Zend Framework 68

Validating Form Input

Of course, the previous example doesn't prevent you from entering an invalid e-mail address or
password, including none at al. To make sure a form field isn't blank, you can associate the
set Requi red() method with the form field, like this:

$emai| = new Zend_Form El ement _Text (' email"');
$emai | - >set Attrib('size', 35);
$emai | - >set Requi red(true);

Merely adding the validator to your model won't result in it being enforced. Y ou also need to adjust
the 1 ogi n action so that thei sval i d() method is called, passing the POSTed data as the method's
lone parameter:

public function | ogi nAction()

{
$f orm = new Appl i cati on_Mdel _FornlLogi n();
i f ($this->getRequest()->isPost()) {
if ($form >i sValid($this-> request->getPost()))

{
echo "<p>VALI D | NPUT! </ p>";

}
}

$t hi s->view>form = $form

}

With the validator and action logic in place, the Zend Framework will automatically associate
an error message with the invalid field even if you override the default form layout using the
set Decor at or s() method aswe did earlier in the chapter. As an added bonus, it will automatically
retain the entered form values (whether valid or not) asaconveniencefor the user. The error message
associated with the e-mail address form field is demonstrated in Figure 5.4.

Easy PHP Websites with the Zend Framework 69

Login to Your GameNomad Account

E-mail Address

« Value is required and can't he empty

Password

Login

Figure5.4. Displaying a validation error message
Tip

Chances are you'll want to modify the error messages default text, or perhaps group
all messages elsewhere rather than next to each form field. If so, see the later section
"Displaying Error Messages'.

While ensuring a field isn't blank is a great idea, you'll often need to take additional validation
steps. Zend_Form takes into consideration the vast majority of your validation needs by integrating
with another powerful Zend Framework component named Zend Validate. The Zend Validate
component is packaged with over two dozen validators useful for verifying the syntactical
correctness of an e-mail address, credit card number, | P address or postal code, determining whether
a string consists solely of digits, alphanumerical characters, and ensuring numbers fall within a
certain range. You can also use Zend_Validate to compare data to aregular expression and can even
define your own custom validators. A partial list of available validatorsis presented in Table 5-1.

Tableb5.1. Useful Zend_Form Validators

Name Description

Alnum Determines whether a value consists solely of alphabetic and
numeric characters

Alpha Determines whether a value consists solely of alphabetic
characters

Between Determines whether a vaue fals between two predefined
boundary values

Easy PHP Websites with the Zend Framework 70

Name Description

CreditCard Determines whether acredit card number meetsthe specifications
associated with a given credit card issuer. All major
issuing institutions are supported, including American Express,
MasterCard, Solo and Visa.

Date Determines whether avalueisavalid date provided in the format

YYYY- MVt DD

Db_RecordExists

Determines whether avalueisfound in a specified database table

Digits Determines whether avalue consists solely of numeric characters

Email Address Determines whether a value is a syntactically correct e-mail
address as defined by RFC2822. This validator is also capable
of determining whether the domain exists, whether MX records
exist, and whether the domain's server is accepting e-mail.

Float Determines whether a value is a floating-point number

GreaterThan Determines whether a value is greater than a predefined a
minimum boundary

Identical Determines whether avalue isidentical to a predefined string

InArray Determines whether a value is found within a predefined array

Ip Determines whether avalueisavalid IPv4 or IPv6 | P address

Isbn Determines whether a value is a valid 1ISBN-10 or ISBN-13
number

NotEmpty Determines whether avalue is not blank

Regex Determineswhether avalue meetsthe pattern defined by aregular

expression

Y ou can associate these validators with aform field using the Zend_Form addVval i dat or () method.
As an example, consider GameNomad's user registration form / account / r egi st er). Obviously
welll want the user to provide avalid e-mail address when registering, and so define the form field
within the registration form model / appl i cat i on/ nodel s/ For nRegi st er . php likethis:

$emai | = new Zend_Form El enent _Text (' enmil');

$emai | ->set Attrib(' size',
$enmi | - >set Requi red(true);

35);

$enmi | - >addVal i dat or (' enmi | Address');

Easy PHP Websites with the Zend Framework 71

Submitting an invalid e-mail address produces the error message depicted in Figure 5.5.

Login to Your GameNomad Account

E-mail Address
jasonATexample.com |

» 'jasonATexample.com' is no valid email
address in the basic format local-
part@hostname

Password

Login

Figure 5.5. Notifying the user of an invalid e-mail address

Several validators require you to specify boundariesin order for the validator to work properly. For
instance, the st ri ngLengt h validator will ensure that a string consists of a character count falling
between a specified minimum and maximum. This can be useful for making sure that the user
chooses a password consisting of acertain number of characters. Thefollowing example can be used
to make sure that a registering user's password consists of 4-15 characters:

$pswd = new Zend_For m El enent _Password(' pswd') ;

$pswd- >set Attri b(' size', 35);

$pswd- >set Requi red(true);

$pswd- >addVal i dator (' StringLength', false, array(4,15));

You might be wondering about the mysterious second parameter in the above reference
to addvalidator(). When specifying boundary values, you'll need to aso supply the
addVval i dator ()'s "chain break" parameter, which is by default set to fal se. This parameter
determines whether the next validator will executeif the previousvalidator fails. Because the default
isfal se, the Zend Framework will attempt to execute al validators even if onefails. If you change
thisvaluetotrue, validation will halt immediately should one of the validators fail.

Easy PHP Websites with the Zend Framework 72

Displaying Error Messages

Asyou witnessed from previous examples, default error messages are associated with each validator.
However these messages aren't particularly user friendly, and so you'll probably want to override
these messages with versions more suitable to your website audience. To create a custom error
message, use the addEr r or Message() as demonstrated here:

$pswd = new Zend_For m El enent _Password(' pswd');

$pswd->set Attri b(' size', 35)

$pswd- >set Requi red(true)

$pswd- >addVal i dat or (' StringLength', false, array(4,15))

$pswd- >addEr r or Message(' Pl ease choose a password between 4-15 characters')

Customizing Your Messages' Visual Attributes

To further customize these messages, use your browser's View Source feature to examine how the
error messages are rendered and you'll see that each message is associated with a CSS class named
errors:

<ul class="errors">Please provide a valid e-mail address

Y ou can use this CSS class to customize the color, weight and other attributes of these messages.
Grouping Messages

If you prefer to group error messages together rather than intersperse them throughout the form,
use zend_For msget Error s() method. This method returns an associative array consisting of form
element names and error messages. This method does behave a bit odd in that it will always return
an array associated with the form's submit button, meaning you'll need to account for the blank value
when formatting the errors. For instance, the following output is indicative of what you'll find when
using PHP'svar _dunp() method to display the array contents:

array(3) {
["email"]=> array(1l) { [0]=>
string(37) "Please provide a valid e-mai| address" }
["pswd"]=> array(l) {
[0]=> string(28) "Please provide your password" }
["submt"]=> array(0) { }
}

Of course in order to access this error message array you'll need to pass it to the view. To do so,
modify the Account controller'si ogi n action sothat theerrorsareretrieved if thei sval i d() method
returns FALSE:

Easy PHP Websites with the Zend Framework 73

if ($form >isValid($this-> request->getPost()))

{

echo "<p>VALI D | NPUT! </ p>";
} else {

$t hi s->view>errors = $form >getErrors();
}

Using a custom view helper (custom view helpers were introduced in Chapter 3) you can
conveniently encapsulate the error message format and display logic, producing output such as that
presented in Figure 5.6.

Login to Your GameNomad Account

+ Please provide a valid e-mail address
* Please provide your password

E-mail Address

Password

Login

Figure 5.6. Displaying a validation error message

To create the message format shown in Figure 5.6 I've created the following Error s view helper
(namethisfile Errors. php and placeit in your appl i cat i on/ vi ews/ hel per s/ directory):

cl ass Zend_Vi ew_Hel per _Errors extends Zend_Vi ew_Hel per _Abstract

{

/**

* Qutputs errors using a uniform formt
*

* @aram Array $errors

* @eturn nil

*/

public function Errors($errors)

Easy PHP Websites with the Zend Framework 74

{
if (count($errors) > 0) {
echo "<div id='errors'>";
echo "";
foreach ($errors AS $error) {
if ($error[0] !'="") {
printf("%", $error[0])
}
echo "";
echo "</div>";
}
}
}

With the view helper created, all that's left is to modify the | ogi n. pht M view to output the errors
if any exist:

<h3>Login to Your GameNomad Account</h3> <?= $this->Errors($this->errors); 2> <?= $this-
>form; ?>

Completing the Process

Should the i sval i d() method return TRUE, meaning that all fields have met their validation
requirements, then you'll need to process the data. Exactly what this entails depends upon what you
intend on doing with the form data. For instance, you might insert the datainto adatabase, initiate an
authenticated user session, or e-mail the form data to atechnical support team. All of these tasks are
topicsfor later chapters so while I'd prefer to avoid putting the cart ahead of the horse and dive into
concepts that have yet to be introduced, it would be nonetheless useful to offer a complete example
which showsyou just how succinct your code can really be when taking full advantage of zend_For m
and models such as For m_ogi n. The following example presents a typical login action, responsible
for presenting thelogin form, validating submitted form data, attempting to authenticate the user and
initiate anew session if the form datais valid, updating the user's account record to reflect the latest
successful login timestamp, and displaying errors or other notifications based on the authentication
attempt outcome. All of these tasks are accomplished in 50 lines of succinct, user-friendly code! The
code is presented, followed by a brief summary. Don't worry about understanding all of the syntax
for now as I'll be introducing it in great detail in later chapters; instead just marvel at the simple,
straightforward approach used to accomplish these tasks.

01 public function | oginAction()
02 {

Easy PHP Websites with the Zend Framework

03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

$f orm = new Appl i cati on_Mdel _FornLogi n();
if ($this->getRequest()->isPost()) {
if ($form >isValid($this-> request->getPost())) {

$db = Zend_Db_Tabl e: : get Def aul t Adapt er () ;
$aut hAdapt er = new Zend_Aut h_Adapt er _DbTabl e($db) ;

$aut hAdapt er - >set Tabl eNane(' accounts');

$aut hAdapt er - >set | denti t yCol um(' emai | ') ;

$aut hAdapt er - >set Cr edent i al Col um(' pswd') ;

$aut hAdapt er - >set Credent i al Treat nent (' MD5(?) and confirmed = 1');

$aut hAdapt er - >set | dent i t y($f orm >get Val ue(' enai |l '));
$aut hAdapt er - >set Cr edent i al ($f or m >get Val ue(' pswd'));

$auth = Zend_Aut h: : get | nstance();
$result = $aut h- >aut hent i cat e($aut hAdapt er) ;

/1l Did the user successfully |ogin?
if ($result->isValid()) {

$account = new Application_Mdel _Account();
$l ast Logi n = $account - >f i ndByEn=i | ($f or m >get Val ue(' enmi |l '));
$l ast Logi n->l ast _login = date('Y-md Hi:s'");

$l ast Logi n- >save();

$t hi s->_hel per->f| ashMessenger - >addMessage(' You are | ogged in');
$t hi s->_hel per->redirector('index', 'index');

} else {
$this->view>errors["forn'] = array("Login failed.");

}

} else {
$thi s->view>errors = $f orm >get Errors();

}

$t hi s->view>form = $form

Easy PHP Websites with the Zend Framework 76

Let'sreview the code:
» Line 04 instantiates the For mLogi n model as has been demonstrated throughout this chapter.

» Line 06 determines whether the form has been submitted. If so, form validation and subsequent
attempts to authenticate the user will ensue.

 Lines10-22 attempt to authenticate the user by consulting a database table named account s. This
topicisdiscussed in great detail in Chapter 8.

« |If authentication was successful (as determined by line 25), lines 27-33 update the successfully
authenticated user's | ast _| ogi n attribute within his database record to reflect the current
timestamp.

» Lines35-36 are responsible for letting the user know he has successfully logged into the site and
redirecting him to the home page. Thisis known as a flash message, a great feature I'll introduce
in the next section.

» Lines 38 and 44 account for any errors which have cropped up as a result of attempting to
authenticate the user. Notice how line 38 in particular embraces the same format used by
Zend_Form.

Introducing the Flash Messenger

Y our users are busy people, and so will appreciatefor any stepsyou can take to reduce the number of
pagesthey'll need to navigate when creating a new account or logging into the website. For instance,
following a successful login it would be beneficial to automatically transport users to the page they
will most likely want to visit first. At the same time you'll want to make it clear to the user that he
did successfully login to his account. So how can you simultaneously complete both tasks?

Most modern web frameworks, the Zend Framework included, solve this dilemma by offering a
feature known as aflash messenger. The flash messenger isamechanism which allowsyou to create
a notification message within one action and then display that message when rendering the view of
another action. This feature was demonstrated in lines 35-36 of the previous example:

$t hi s->_hel per->f| ashMessenger - >addMessage(' You are | ogged in');
$t hi s->_hel per->redirector('Index', 'index');

Thefirst line of this example uses the built-in flash messenger'saddMessage() method to definethe
notification message. Next, the user isredirected to the | ndex controller'si ndex action.

Easy PHP Websites with the Zend Framework 77

Although flash messages may be defined within any action and conceivably displayed in any other,
chances are there will only be a select few where the latter will occur. Therefore you could either
embed the following code in the action whose view will display a flash message, or within a
controller'si ni t () method:

i f ($this->_hel per->Fl ashMessenger - >hasMessages()) {
$t hi s->vi ew >nessages = $t hi s->_hel per - >Fl ashMessenger - >get Messages() ;
}

Y ou can however consolidatethe view-specific codetoyour | ayout . pht ni file, adding thefollowing
code wherever you would like the messages to appear:

<?php
i f (count($this->messages) > 0) {
printf("<div id='flash'>%</div>", $this->nessages[0])

?>

This presumes you're only interested in the first message. While it's possible to pass and display
several messages, |'ve not had to do so and therefore am only worried about the first array element.

With the flash messenger integrated, you'll see aflash message displayed after successfully logging
into your GameNomad account. This feature is depicted in Figure 5.7.

HOME ACCOUNT FRIENDS GAMES COMMUN

BROWSE GAMES: XBOX 360 PS3 Wi

¥You have successfully logged in

Figure5.7. Using the flash messenger
Populating a Form

Whether you're creating administrative interfaces for managing product information, or would like
to provide registered users with the ability to manage their account profiles, you'll need to know
how to prepopulate forms with data retrieved from some data source, presumably a database. As it
turns out, populating Zend Framework formsis surprisingly easy, requiring you to simply create an

Easy PHP Websites with the Zend Framework 78

associative array containing keyswhich match the form field names, and the keys' respective values
which you'd like to prepopulate the fields. With this array created, you'll passit to the form object's
set Def aul t s() method:

$f orm = new Appl i cati on_Mdel _FornProfile();

$data = array(
"usernane' => 'wjgilnore',
"emai |' =>"'w @xanple.con,
'zi p_code' =>'43201'

Ik

$f or m >set Def aul t s($dat a) ;

$t hi s->view>form = $form

Populating Select Boxes

All of the examples provided so far in this chapter involve the simplest of form controls, namely
text fields and submit buttons. However, many real-world forms will often be much more complex,
incorporating a selection of more advanced controls such as check boxes, radio buttons and select
boxes. The latter is often a source of confusion to new Zend_Form users because of the need
to populate the control with eligible values. As it turns out, once you know the syntax the task
is quite easy, requiring you to create an associative array containing the set of select box keys
and corresponding values, and then pass that array to the zend_For m El enent _Sel ect oObject's
AddMul ti Opti ons() method:

$status = new Zend_For m El enent _Sel ect (' status');

$options = array(
1 => "On the Shel f",
2 => "Currently Playing",
3 => "For Sal e",
4 => "On Loan"
)

$st at us- >AddMul ti Qpt i ons($opti ons) ;

While the above approach is useful when you're certain the select box values won't change, its
commonplace for these values to be more fluid and therefore preferably retrieved from a database.
Therefore at risk of getting ahead of myself, this nonethel ess seems an appropriate time to show you
at least one of severa easy ways to populate a select box dynamically using data retrieved from a
database by way of the Zend Db component. The Zend Db component includes a useful method
called f et chPai rs() which can retrieve aresult set as a series of key-value pairs. This feature is

Easy PHP Websites with the Zend Framework 79

ideal for populating a select box, since this particular dataformat is precisely what we want to pass
to theaddMul ti Opti ons() method:

$db = Zend_Db_Tabl e_Abstract: : get Def aul t Adapter();
$opti ons = $db- >f et chPai r s(
$db->sel ect ()->fron(' status', array('id , 'nane'))
->order (' name ASC), 'id');

$status = new Zend_Form El ement _Sel ect (' status');

$st at us- >AddMul ti Opti ons($opti ons);

Don't worry if this syntax doesn't make any sense, asit will be thoroughly introduced in Chapter 6.

Testing Your Work

Therearefew tasks more time-consuming and annoying than testing web formsto determine whether
they areworking correctly. Fortunately, it's possible to automate agreat deal of the testing using unit
tests. We can create tests which ensure that the form is rendering correctly, that input is properly
validated, and that the form datais saved to the database, among others. In this section I'll show you
how to write tests which carry out these tasks.

Making Sure the Contact Form Exists

To make sure the contact form exists and includes the expected fields, you can use the
assert Quer yCount () methodto confirmthat aparticular element and associated DIV ID exist within
the rendered page, as demonstrated here:

public function testContactActi onContai nsContact For ()
{
$t hi s->di spatch('/about/contact"');
$t hi s->assert QueryCount (' for m#fcontact', 1);
$t hi s->assert QueryCount (' i nput [nane~="nane"]"', 1);
$t hi s->assert QueryCount (' i nput[name~="enail"]"', 1);
$t hi s->assert QueryCount (' i nput [name~="nessage"]', 1);
$t hi s->assert QueryCount (' i nput [name~="subm t"]"', 1);
}

Testing Invalid Form Values

The Zend Framework's input validators have been thoroughly tested by the development team, so
when testing your forms the concern doesn't liein making sure validators such asthe Enai | Addr ess
validator are properly detecting invalid e-mail addresses, but rather in making sure that you have

Easy PHP Websites with the Zend Framework 80

properly integrated the validatorsinto your form model. Let's create atest which determines whether
GameNomad's contact form (ht t p: / / www. gamenonad. cont about / cont act) is properly validating
the supplied input before e-mailing the contact request to the support staff. This form is presented
in Figure 5.8.

Contact the GameNomad Team

Jsa this farm 1o gat in bauch mith the Garmabamad teaml
o widlooma all guastiens, Somimerts, dm S DCe e, and
crdemilss b0 by and Tellew Lp mith yol mithin 34 hadrsl

o Mam=

o -l Acddrmgs

Vo Mesnsgs

S our MEssage

Figure 5.8. GameNomad's Contact Form

This form requires the visitor to supply a name, e-mail address, and a message, with the validators
ensuring the name and message fields aren't blank, and that the e-mail address field contains a
syntactically valid e-mail address. Should any of these validationsfail, the errorswill be rendered to
the page using the custom Er r or s view helper introduced earlier in this chapter. If the validations all
pass, then the e-mail will be sent and the user will be redirected to the home page. Therefore we can
generally determine whether any validationsfail by asserting the redirection hasn't occurred, or more
specifically by examining theerror s DIV element used to display the error messages. Let'srun with
the former scenario and in later chapters I'll show you how to focus on specific error messages to
determine exactly what failed.

Easy PHP Websites with the Zend Framework 81

Because there existsfar more than one set of invalid data, we're going to use agreat PHPUnit feature
known as adata provider toiterate over multiple sets of invalid datain order to ensure the validators
are properly detecting multiple errant fields. You'll place these invalid permutations within an array
found in an aptly-named method, placing the method within the About Cont rol | er Test . php class:

public function invalidContact! nfoProvider()

{
return array(
array("Jason Glnore", "", "Name and Message but no e-mmil address"),
array("", "w @xanple.cont, "E-mail address and nessage but no nane"),
array("", "", "No nanme or e-mmil address"),
array("No E-mail| address or nmessage", , "),
array("Jason G lnore", "lnvalidEmil Address", "lInvalid e-mail address")

Notice how this array is returned the moment this method is executed. Thisis required in order for
PHPUnit's data provider feature to operate properly. Next, we'll define the test which uses this data
provider:

01 /**

02 * @lat aProvi der invalidContactl nfoProvider
03 */

04 public function testlslnvalidContact!nformati onDetected($nane, $email, $nessage)
05 {

06

07 $this->request->set Met hod(' POST')

08 ->set Post (array/(

09 ' name' => $nane,

10 "emai |’ => $emai |l ,

11 ' nessage’ => $nessage

12));

13

14 $this->di spatch('/about/contact');

15

16 $this->assertNotRedirectTo('/");

17

18 }

This example includes several important test-related features, so let's review the code:

 Line 02 defines the data provider method used by the test using the @lat aPr ovi der annotation.
Y ou must include thislinein order for PHPUnit to be able to access the array of test values found
in the data provider method!

Easy PHP Websites with the Zend Framework 82

» Notice how line 04 is passing in three input parameters which correspond to the three el ements
found in each instance of the data provider's multidimensional array. Obviously you will adjust
this number upwards or downwards depending upon the number of test values found in other data
providers.

e Lines 07-12 set the request method to POST, and assign the three input parameters to an
associative array which will be sent along with the POST request.

» Line 14 issues the resource request, identifying the About controller'scont act action.

 Finally, line 16 ensuresthat the user isnot redirected to the GameNomad home page, which would
mean that at |east one of the provided data sets validated properly.

Testing Valid Form Values

The previous test ran the GameNomad contact feature through a battery of scenarios involving
invalid user data. Likewise, we'll also want to verify that the feature will properly accept and
process valid input. This test behaves identically to the previous, except that this time we can just
pass one set of valid input, and additionally use the assert Redi rect To() method rather than the
assert Not Redi rect To() method to ensure the redirection occurs as expected:

public function testlsValidContact! nformati onEmai | edToSupport ()

{

$t hi s->request - >set Met hod(' POST")
->set Post (array/(

' nane' => 'Jason Gl nore',
"emai |’ => 'wj @V gil nore.con ,
' message’ => "This is ny test nessage."

)
$t hi s->di spat ch('/about/contact');

$t hi s->assertRedirect To('/');

}

When the provided user input is deemed valid, GameNomad's cont act action will send an e-mail
containing the visitor's message and contact information to the e-mail address defined within the
application configuration file's emai | . support parameter. Because you'll presumably be regularly
running the test suite, consider pointing the e-mails to a specially designated testing account by
overriding the enwi | . support parameter within the configuration fil€s[testing : production]
section.

Easy PHP Websites with the Zend Framework 83

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

» Nametwo reasons why the Zend_Form component is preferable to creating and processing forms
manually.

 Describe in a paragraph how Zend_Form can be configured so as to alow certain forms to be
used for both inserting and later modifying data.

» How does the Flash Messenger feature streamline a user's website interaction?

» What istherole of PHPUniIt's data provider feature?

Chapter 6. Talking to the
Database with Zend Db

Even the simplest website will likely rely upon a database for data management, meaning you're
going to devote a great deal of time writing code which passes data between the PHP logic
responsible for driving your application and the SQL code which interacts with the database. This
common practice of mixing SQL with the rest of your website's logic is counteractive to the goal
of separating the application's data, logic, and presentation tiers. So what's a devel oper to do? After
all, it's clearly not possible to do away with the database, but using one at the cost of sacrificing
efficiency and sound devel opment practices seems an impractical tradeoff.

The Zend Framework attempts to lessen the pain by providing an object-oriented interface named
Zend_Dbwhich you can useto talk to a database without having to intermingle SQL and application
logic. In this chapter you'll learn al about Zend_Db, along the way gaining valuable experience
building key features which will provide you with a sound working understanding of thisimportant
aspect of the Zend Framework.

Because the Zend Db component is packed with features, this chapter introduces a great deal of
material. Therefore | thought it would be worthwhile to summarize the sections according to their
order of appearance so asto provide you with an easy way to later reference the material:

* Introducing Object-relational Mapping: This chapter kicks off with an introduction to object-
relational mapping, an approach to database access upon which the Zend Framework's Zend_Db
is built.

* Introducing Zend_Db: The Zend_Db component is the Zend Framework's primary conduit for
talking to a database. In this step I'll introduce you to this component, which is so powerful that
it almost manages to make database access fun.

» Creating Your First Model: When using Zend Db, you'll rely upon a series of classes (known
as models) which serve as the conduits for talking to your database. These models expose the
underlying database tables via a series of attributes and methods, meaning you'll be able to query
and manage data without having to write SQL queries! In this step I'll show you how to create a
model for managing video game data.

e Querying Your Models: With the video game model created, we can begin retrieving data from
the database using the query syntax exposed through the Zend_Db component. In this step I'll

Easy PHP Websites with the Zend Framework 85

introduce you to this syntax, showing you how to retrieve data from the database in a variety of
useful ways.

» Creating a Row Model: Row models give you the ability to query and manipulate specific rows
within your database tables. In this step I'll show you how to configure and use this powerful
feature.

* Inserting, Updating, and Deleting Data: Just as you can retrieve data through the Zend_Db
component, so can you use it to insert, update, and delete data. In this step I'll show you how.

» Creating Model Relationships: Zend Db supports the ability to model table relationships,
alowing you to deftly interact with the database in amazingly convenient ways. In my experience
thisisone of the component's most compelling features, and in thisstep I'll show you how to take
advantage of this feature by defining a model which we will use to manage gaming platforms
(such as Xbox 360 and Nintendo Wii), and tying it to the video game model so we can associate
each game with its platform.

» JOINing Your Data: Most of your time will be spent dealing with simple queries, however you'll
occasionally require amore powerful way to assemble your data. In this step I'll introduce you to
the powerful SQL statement known as the join, which will open up amyriad of new possibilities
to consider when querying the database.

» Creating and Managing Views: As the complexity of your data grows, so will the SQL queries
used to interact with it. Rather than repeatedly refer to these complex queries within your code,
you can bundle them into what's known as a view, which stores the query within the database.
You'll then be be able to call the query associated with the view using a simple alias rather than
repeatedly insert the complex query within your code. In this section I'll show you how to create
and manage views within your Zend Framework-driven websites.

» Paginating Results with Zend_Paginator: When dealing with large amounts of data, you'll
probably want to spread the dataacross several pages, or paginateit, so the user can easily navigate
the data without having to endure long page loading times. But manually splitting retrieved data
into multiple pages is a more difficult task than you might think; thankfully the Zend_Paginator
component can do the dirty work for you, and in this step I'll show you how to useit.

Before continuing, 1'd like to point out that while the Zend Framework's Zend_Db component doesa
finerole of encapsulating the application's database functionality, it lacks many of the conveniences
enjoyed by similar implementati onsfound within other frameworks, including notably Ruby on Rails
(http://rubyonrails.org/). Thisisn't due to oversight, but is rather the result of the Zend Framework
developers particular philosophy in terms of providing a solution which serves as the starting point

Easy PHP Websites with the Zend Framework 86

for building more sophisticated features. Notably, Zend_Db supports the ability to create table
gateways, table mappers, and associated model classes, however this approach can quickly become
time-consuming, complex, and tedious. Therefore I've made the perhaps controversial although |
believe pragmatic decision to spend this chapter introducing you to only Zend Db's fundamental
features, and will not guide you down the path of creating your own ORM implementation as
described in the Zend Framework Quickstart. Instead, if you require a more sophisticated solution
than what's available by way of the fundamentals discussed in this chapter, | suggest you consider
Doctrine, afull-blown ORM solution introduced in Chapter 6. Although at the time of this writing
Doctrinewas not natively supported by the Zend Framework, thereexistsarel atively straightforward
way to use Doctrinein conjunction with your Zend Framework applications, and in the next chapter
I'll show you how thisis accomplished.

Introducing Object-Relational Mapping

Object-relational mapping (ORM) tools provide the developer with an object-oriented database
interface for interacting with the underlying database. Although the implementation details vary
according to each ORM solution, generally speaking an ORM will map a class to each database
table, with the former serving as the programmatic conduit for manipulating the latter. This class
not only provides a seamless table interface, performing tasks such as selecting, inserting, updating,
and deleting data, but can also be extended to incorporate other features such as data validation.
Best of al, because the chosen ORM is typically written in the same language as that used for the
rest of the application, the developer is no longer inconvenienced by the need to repeatedly digress.
Further, the isolation of database-related actions allows you to effectively maintain the desired tier
separation espoused by web frameworks.

If like me your PHP knowledge outweighs your SQL acumen, the object-oriented database interface
isawelcomefeature. Further, you'll nolonger haveto haphazardly intermingle PHP and SQL syntax,
an approach which isprobably the largest contributor to the messknown as" spaghetti code". Instead,
you'll use aseries of exposed methods and other features made available through the ORM to cleanly
and concisely integrate the database into your website.

Because ORM is such an attractive solution, avariety of open source and commercial ORM projects
are currently under active development. PHP is no exception, and in the next chapter I'll introduce
youto Doctrine, whichiswidely considered to be one of the PHP community's most prominent ORM
solutions. The Zend Framework too offersits own native ORM solution, packaged into a component
called Zend Db. Let's take an introductory look at Zend Db, examining a typical bit of code used
to retrieve a video game according to its Amazon.com ASIN (Amazon Standard |dentification
Number):

‘$gameTabI e = new Applicati on_Mdel _DbTabl e_Game() ;

Easy PHP Websites with the Zend Framework 87

$sel ect = $ganeTabl e->sel ect () ->where('asin = ?', 'B002BSA20M);
$t hi s->vi ew- >game = $ganeTabl e- >f et chOne($sel ect) ;

From within the associated view you can access the record's columns using the familiar object-
oriented syntax:

<h3><?= $t hi s- >ganme- >nane; ?></h3>

<ing src="/imges/ ganes/ <?= $t hi s- >ganme- > mage_nedi um ?>" style="float: left;" />
<p>

Rel ease date: <?= date("F j, Y', strtotine($this->gane->rel ease_date)); ?>

</ p>

Using thisintuitive object-oriented interface, it's easy to create video game profile pages such asthe
one presented in Figure 6.1.

Dead Rising 2 @
| ©49.99 [zmaoncom)

IEIHH h INk | Publisher: Capcom

£ "ﬁ . Platform: Xbox 360
: ,‘ *": | Release Date: September 28, 2010
¥ 2 el
e

Current Amazon.com Sales Rank: £7563

e .
e Add game to your library

Figure 6.1. Building a game profile page using Zend_Db

Let'smove on to consider how an ORM solves a more sophisticated problem. Most ORM solutions,
Zend Db included, are capable of intuitively handling the often complex relations defined within
a database schema. For instance, suppose you were updating a table named r anks with the daily
salesrankings of the video games stored within your database as determined by Amazon.com's sales
volume. Becausethesal es_r anks tableincludesaforeign key which pointsto arecord found within
the games table, we're dealing with a one-to-many relationship, meaning that one game isrelated to
multiple sales rank entries. Y ou want to provide users with a summary highlighting these historical
rankings, and so want to create a page which identifies the game and provides a tabular summary of

Easy PHP Websites with the Zend Framework 88

the rankings over a given period. Provided you've properly configured the relationship within your
models (a subject we'll discuss in some detail later in the chapter), retrieving these rankings using
Zend Dbistrivial:

$ganeTabl e = new Appl i cati on_Mdel _DbTabl e_Gane();

$sel ect = $ganmeTabl e- >sel ect () ->where('asin = ?', ' BO0O2BSA20M) ;
$t hi s->vi ew- >gane = $ganeTabl e- >f et chOne($sel ect) ;

$t hi s->vi ew >r anki ngs =
$t hi s- >vi ew- >gane- >f i ndDependent Rowset (' Appl i cati on_Model _DbTabl e_Rank')

With the $r anki ngs view scope variable defined, you can iterate over it within the view using PHP's
f or each statement:

foreach ($this->view >rankings AS $ranking) {
printf("Date: %, Rank: 9%
", $ranking->created_on, $ranking->%rank);
}

These examples only provide ataste of what Zend Db's capabilities. Throughout the remainder of
this chapter I'll introduce you to avast selection of other useful Zend Db features.

Introducing Zend_Db

The Zend_Db component provides Zend Framework users with a flexible, powerful, and above all,
easy, solution for integrating adatabase into awebsite. It's easy because Zend_Db almost compl etely
eliminates the need to write SQL statements (although you're free to do so if you'd like), instead
providing you with an object-oriented interface for retrieving, inserting, updating, and deleting data
from the database.

Connecting to the Database

Built atop PHP's PDO extension, Zend_Db supports a number of databases including MySQL,
DB2, Microsoft SQL Server, Oracle, PostgreSQL, SQL ite, and others. Connecting to the desired
databaseistypically done by defining the desired database adapter and connection parameterswithin
the appl i cation.ini file (the purpose of this file was introduced in Chapter 5), so let's begin by
using the ZF CL1 to configure your application to use aMySQL database. Enter your project's root
directory and execute the following command:

%zf configure db-adapter \
> "adapt er =PDO_MYSQ.&anp; \
> host =I ocal host &np; \

Easy PHP Websites with the Zend Framework 89

> user name=ganenonmad_user &np; \

> passwor d=secr et &anp; \

> dbnanme=ganenomad_dev" devel opnent

A db configuration for the devel opnent section has been witten to the
application config file.

Executing this command will result in the following five parameters being added to the devel opnent
section of theappl i cation.ini file:

resour ces. db. adapt er = PDO_MYSQL
resour ces. db. par ans. host = | ocal host
resour ces. db. par ans. user nane = ganenomad_user
resour ces. db. par ans. passwor d = secret

resour ces. db. par ans. dbnanme ganmenomad_dev

Believe it or not, adding these parameters to your application.ini fileis al that's required
to configure your database. Next, create the database which you've associated with the
resour ces. db. par ans. donane parameter if you haven't already done so, and within it create the
following table:

CREATE TABLE ganes (
id I NTEGER UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
asi n VARCHAR(255) NOT NULL,
name VARCHAR(255) NOT NULL,
price DECI MAL(5,2) NOT NULL,
publ i sher VARCHAR(255) NOT NULL,
rel ease_date DATE NOT NULL

IE

WEe'll usethistable asthe basisfor several initial examplesin order to acquaint you with Zend_Db's
fundamental features.

Creating Your First Model

You'll use Zend_Db to interact with the database data via a series of classes, or models. Each model
is configured to represent the database tables and even the rows associated with atable. I'll show you
how to create and interact with row-level models later in this chapter, so for now let's concentrate
on table-level models, which extend Zend _Db's zend_Db_Tabl e_Abst ract class.

Asusual, the best way to learn how all of thisworksis by using it. So let's begin by creating a class
which will serve as the model for interacting with the ganes table. You can generate this model
using the ZF CLI, which is always the recommended way to create new application components
when possible;

Easy PHP Websites with the Zend Framework 90

%zf create db-table Gane

At the time of this writing the zf utility was capable of doing little more than creating the class
skeleton and saving the file to the appl i cati on/ nodel s/ DoTabl e directory, although | expect its
capabilities to improve in future versions. Nonetheless, the tool serves as a useful tool for getting
started, so once the model is created open it appl i cati on/ model s/ DbTabl e/ Gane. php) and update
the class so it looks exactly like the following:

01 cl ass Application_Mdel _DbTabl e_Gane extends Zend_Db_Tabl e_Abstract

02 {
03 protected $_nane = 'ganes';
04 protected $_primary = "id';
05 }

Although just five lines of code, there are some pretty important things happening in this listing:

 Line01 definesthe name of themodel Appl i cat i on_Model _DbTabl e_Gane), and specifiesthat the
model should extend the zend_Db_Tabl e_Abstract class. The latter step isimportant because in
doing so, the Appl i cat i on_Nodel _DbTabl e_Ganme model will inherit all of thetraitsthe Zend_Db
grantsto models. Asfor naming your model, | prefer to use the singular form of the word used for
the corresponding table name (in this case, the model nameisAppl i cati on_Mdel _DbTabl e_Gane
(although the first two parts of the name are just prefixes, so when discussing your models with
others it's common to just refer to the model name, in this case, as Gane), and the table name is
ganes). It's very important you understand that this model's Appl i cati on_ prefix identifiesit as
being intended for the website's default module, which is the module created when a new Zend
Framework project is created using the ZF CLI. If you wanted to create a model intended for a
blog module, you would name the model something likeBl og_Model _Ent ry. Youwould placethis
model in the blog module's model directory rather than the default model directory. See Chapter
2 for more information about the Zend Framework's modular architecture feature.

 Because of my personal preferencefor using singular formwhen naming models, line 03 overrides
the Zend Framework's default behavior of presuming the model name exactly matchesthe name of
the database table. Neglecting to do thiswill cause an error, because the framework will presume
your database table name is gane, rather than gares.

e LineO4identifiesthetable'sprimary key. By default the Zend framework will presumethe primary
key isan automatically incrementing integer namedi d, so thislineisactually not necessary inthe
case of the ganes table; | prefer to include the line simply as a matter of clarification for fellow
developers. Of course, if you were using some other value asaprimary key, for instance aperson's
social security number, you would need to identify that column name instead.

Easy PHP Websites with the Zend Framework 91

Congratulations, you've just created an interface for talking to the database's ganes table. What next?
Let's start by retrieving some data.

Querying Your Models

It'slikely the vast majority of your time spent with the databasewill involveretrieving data. Using the
Zend_Db component selecting data can be done in avariety of ways. In this section I'll demonstrate
several of the options at your disposal.

Querying by Primary Key

The most commonplace method for retrieving atable row isto query by the row's primary key. The
following example queries the database for the row associated with the primary key 1:

$ganeTabl e = new Appl i cati on_Mdel _DbTabl e_Gane();
$ganme = $ganeTabl e->find(1);
echo "{$gane[0] - >nanme} (ASIN {$gane[0]->asin})";

Returning:

‘Call of Duty 4: Mddern Warfare (ASIN. B0016B28Y8)

But why do we even have to deal with index offsets in the first place? After al, using the primary
key implies there should only be one result anyway, right? Thisis because the fi nd() method also
supports the ability to simultaneously query for multiple primary keys, like this:

$game = $ganeTabl e->find(array(1,4));

Presuming both of the primary keys exist in the database, the row associated with the primary key
1 will be found in offset 0, and the row associated with the primary key 4 will be found in offset 1.

Because in most cases you'll probably use thefind() method to retrieve just a single value, you'll
likely want to eliminate the need to refer to an index offset by using the current () method:
$ganeTabl e = new Applicati on_Mdel _DbTabl e_Gane();

$gane = $ganeTabl e->find(1)->current();
echo "{$gane->nane} (ASIN {$ganme->asin})";

Querying by a Non-key Column

You'll inevitably want to query for rows using criteria other than the primary key. For instance,
various features of the GameNomad site retrieve games according to their ASIN. If you only need
to search by ASIN at asingle location within your site, you can hardcode the query, like so:

Easy PHP Websites with the Zend Framework 92

$ganeTabl e = new Appl i cati on_Mdel _DbTabl e_Gane();
$query = $ganeTabl e- >sel ect () ;

$query->where("asin = ?", "B0016B28Y8");

$gane = $ganeTabl e- >f et chRow $query);

echo "{$gane->nane} (ASIN {$ganme->asin})";

Note that unlike when searching by primary key, there's no need to specify an index offset when
referencing the result. Thisis because thef et chrow() method will always return only one row.

Because it's likely you'll want to search by ASIN at several locations within the website, the more
efficient approach isto define a Gare class method for doing so:

function findByAsin($asin) {
$query = $this->select();
$query->where('asin = ?', $asin);
$result = $t hi s->f et chRow($query);
return $result;

Noticethe use of the$t hi s object when executing thesel ect () method. Thisisbecausewe'reinside
the Appl i cati on_Mbdel _DbTabl e_Gane class, so $t hi s can be used to refer to the calling object,
saving you a bit of additional coding.

Now searching by ASIN couldn't be easier:

$ganeTabl e = new Applicati on_Mdel _DbTabl e_Gane();
$gane = $ganeTabl e- >f i ndByAsi n(' B0O016B28Y8') ;

Retrieving Multiple Rows

To retrieve multiple rows based on some criteria, you can usethef et chAl | () method. For instance,
suppose you wanted to retrieve all games with a price higher than $44.99:

$gane = new Application_Mdel _DbTabl e_Gane();
$query = $gane- >sel ect () ;

$query->where(' price > ?', 44.99);

$results = $this->fetchAll ($query);

Thefetchal | () method returns an array of objects, meaning to loop through these results you can
just use PHP's native f or each construct:

foreach($results AS $result) {
echo "{$resul t->nane} ({$result->asin})
";

Easy PHP Websites with the Zend Framework 93

\}
Custom Search Methods in Action

Your searches don't have to be restricted to retrieving records based on a specific criteria. For
instance, the following class method retrieves al games in which the title includes a particular

keyword:

functi on get GanesMat chi ng($keywor ds)
{
$query = $this->sel ect();
$quer y->where(' nane LIKE ?', "%keywords%);
$query->order (' nane');
$results = $this->fetchAll ($query);
return $results;

}

Y ou can then use this method within a controller action like this:

/Il Retrieve the keywords
$t hi s->vi ew >keywords = $t hi s->_request - >get Par an(' keywor ds') ;

$ganme = new Application_Mdel DbTabl e Gane();
$t hi s->vi ew >ganes = $gane- >get GanesMat chi ng($t hi s- >vi ew >keywor ds) ;

Counting Rows

All of the examples demonstrated so far have presumed one or more rows will actually be returned.
But what if the primary key or other criteria aren't found in the database? Zend_Db allows you to
use standard PHP syntactical constructs to not only loop through results, but count them. Therefore,
the easiest way to count your resultsisusing PHP'scount () function. | typically usecount () within
the view to determine whether entries have been returned from a database query:

<?php if (count($this->ganes) > 0) { ?>
<h3>New Ganes</ h3>
<?php foreach($this->ganes AS $gane) { ?>
<p><?= $game- >nane; ?></p>
<?php } ?>

<?php } else { ?>

<p>
No new ganes have been added over the past 24 hours.

Easy PHP Websites with the Zend Framework 94

</ p>
<?php } ?>
Selecting Specific Columns
So far we've been retrieving all of the columns in a given row, but what if you only wanted to

retrieve each game's name and ASIN? Using thef r on() method, you can identify specific columns
for selection:

$ganeTabl e = new Appl i cati on_Mdel _DbTabl e_Gane();
$query = $ganeTabl e->sel ect () ;

$query->fron(' ganes', array('asin', 'title'));
$query->where('asin = ?', 'B0016B28Y8');

$gane = $ganeTabl e- >f et chRow $query);

echo "{$gane- >nane} (\${$game->price})";

Ordering the Results by a Specific Column

To order the results according to a specific column, use the ORDER clause:

$gane = new Application_Mdel _DbTabl e_Gane();
$query = $gane- >sel ect () ;

$quer y->or der (' name ASC);

$rows = $gane->f et chAl | ($query);

To order by multiple columns, pass them to the ORDER clause in the order of preferred precedence,
with each separated by a comma. The following example would have the effect of ordering the
games starting with the earliest release dates. Should two games share the same release date, their
precedence will be determined by the price.

‘$quer y->order (' rel ease_date ASC, price ASC);

Limiting the Results

To limit the number of returned results, you can usethe LI M T clause:

$gane = new Applicati on_Mdel _DbTabl e_Gane();
$query = $gane- >sel ect ();

$query- >where(' name LIKE ?', $keyword);
$query->limt(15);

$rows = $gane- >fet chAl | ($query);

Y ou can also specify an offset by passing a second parameter to the clause:

Easy PHP Websites with the Zend Framework 95

‘$query->| imt(15, 5);

Executing Custom Queries

Although Zend_Db's built-in query construction capabilities should suffice for most situations, you
might occasionally want to manually write and execute a query. To do so, you can just create the
guery and passit to thef et chAl | () method, however before doing so you'll want to filter it through
thequot el nt o() method, which will filter the data by delimiting the string with quotes and escaping
special characters.

In order to take advantage of this feature you'll need to add the following line to your
application.ini file.l suggest adding it directly below the five lines which were generated when
you executed the ZF CLI'sconfi gure db-adapt er command:

resour ces. db. i sDef aul t Tabl eAdapter = true

This line will signa to the Zend Framework that the database credentials found within the
configuration file should be considered the application's default. You'll then obtain a database
connection handler using the get Resource() method, as demonstrated in the first line of the
following example:

$db = $this->get| nvokeArg(' bootstrap')->get Resource('db');

$nane = "Cabel a's Dangerous Hunts '09";

$sql = $db->quot el nt o(" SELECT asi n, nane FROM ganes where nane = ?", $nane);
$results = $db->fetchAll ($sql);

echo count ($results);

Y ou can think of the quot el nt o() method asacatch-all for query parameters, both escaping special
characters and delimiting it with the necessary quotes.

Querying Your Database Without Models

Before moving on to other topics, | wanted to conclude this section with an introduction to an
alternative database query approach which might be of interest if you're building a fairly simple
website. As of the Zend Framework 1.9 release, you can query your tables without explicitly
creating amodel. Instead, you can just pass the database table name to the concrete zend_Db_Tabl e
constructor, like this:

$ganeTabl e = new Zend_Db_Tabl e(' ganes');

You'l then be able to take advantage of all of the query-related features introduced throughout this
section. This approach can contribute towards trimming your project's code base, so be sureto useit

Easy PHP Websites with the Zend Framework 96

for those models you won't need to extend via custom methods. Because it's typical to extend most
models with at least one custom feature, I'll continue using the more advanced approach throughout
the book.

Creating a Row Model

It'simportant that you understand the Gare model created in the previous section representsthe ganes
table, and not each specific record (or row) found in that table. For example, you might use this
Gare model to retrieve a particular row, determine how many rows are found in the table, or figure
out what row contains the highest priced game. However, when performing operations specific to
a certain row, such as finding the most recent sales rank of arow you've retrieved using the Gane
model, you'll want to associate a row-specific model with the corresponding table-specific model.
To do so, add thisline to the Appl i cat i on_Mdel _DbTabl e_Gamre model defined within Gare. php:

‘ protected $ rowCl ass = ' Applicati on_Mdel DbTabl e_GaneRow ;

Next, create the Appl i cat i on_Mbdel _DbTabl e_GameRow model using the ZF CL1:

%zf create db-table GaneRow

A class file named GaneRow. php Will be created and placed within the appl i cati on/ nodel s/
DbTabl e directory. Just aswhen you created the Gane table model, you'll need to do abit of additional
work before the GameRowmodel isfunctional. Open the GameRow model and replace the existing code
with the following contents (notein particular that this class extends zend_Db_Tabl e_Row_Abst r act
as compared to atable-level model which extends zend_Db_Tabl e_Abst ract):

cl ass Applicati on_Mdel _DbTabl e_GaneRow ext ends Zend_Db_Tabl e_Row_Abst r act

function | atestSal esRank()

{
$rank = new Applicati on_Mdel _DbTabl e_Rank();
$query = $rank->sel ect ('rank');
$query->where(' game_id = ?', $this->id);
$query->order (' created_at DESC);
$query->limt(1);
$row = $rank- >f et chRow($query);
return $row >rank;

This row-level model contains a single method named | at est Sal esRank() which will retrieve the
latest recorded sales rank associated with a specific game by querying another table represented by

Easy PHP Websites with the Zend Framework 97

the Rank model. To demonstrate this feature, suppose you wanted to output the sales ranks of all
video games rel eased to the market before January 1, 2011. First we'll usethe Gane model to retrieve
the games stored in the database. Second welll iterate through the array of games (which are objects
of type Appl i cati on_Model _DbTabl e_GaneRow), caling thel at est Sal esRank() method to output
the latest sales rank:

$ganeTabl e = new Appl i cati on_Mdel _DbTabl e_Gane();
$query = $ganeTabl e- >sel ect () - >where("rel ease_date < ?", "2011-01-01");
$resul ts = $ganeTabl e- >f et chAl | ($query);

foreach($results AS $result)

echo "{$resul t->nanme} (Sales Rank: {$result->|atestSal esRank()})
";
}

Executing this snippet produces output similar to the following:

Call of Duty 4: Mdern Warfare (Sal es Rank: 14)
Call of Duty 2 (Sales Rank: 2,208)

NBA 2K8 (Sal es Rank: 475)

NHL 08 (Sal es Rank: 790)

Ti ger Wbods PGA Tour 08 (Sal es Rank: 51)

Inserting, Updating, and Deleting Data

You're not limited to using Zend Db to simply retrieve data from the database; you can also insert
new rows, update existing rows, and delete them.

Inserting a New Row

Toinsert anew row, you can usethei nsert () method, passing an array of valuesyou'd liketo insert:

$ganeTabl e = new Application_Mdel DbTabl e_Gane();

$data = array(
"asin' => 'B0028I BTL6',
"nane' => 'Fallout: New Vegas',
"price' =>"'59.99",
" publ i sher' => 'Bethesda',
'rel ease_date' => '2010-10-19'
)

$ganeTabl e- >i nsert ($dat a) ;

Easy PHP Websites with the Zend Framework 98

Updating a Row

To update arow, you can use the updat e() method, passing along an array of values you'd like to
change, and identifying the row using the row's primary key or another unique identifier:

$ganeTabl e = new Applicati on_Mdel _DbTabl e_Gane() ;
$data = array(
"price' => 49.99
)i
$where = $gane- >get Adapter()->quotelnto('id = ?', '42");

$ganeTabl e- >updat e($dat a, $where);

Alternatively, you can simply change the attribute of a row loaded into an object of type
Zend_Db_Tabl e_Abst r act , and subsequently use the save() method to save the change back to the
database:

$ganeTabl e = new Appli cati on_Mdel _DbTabl e_Gane();

/1 Find NBA 2K11
$game = $ganeTabl e- >fi ndByAsi n(* BOO3I MEQUO) ;

/] Change the price to $39.99
$game- >price = 39.99;

/| Save the change to the database
$ganme- >save();

Deleting a Row

To delete arow, you can use the del et e() method:

$ganeTabl e = new Applicati on_Mdel DbTabl e_Gane();
$where = $ganeTabl e- >get Adapt er ()->quotelnto('asin = ?', 'B003I MEQUO) ;

$ganeTabl e- >del et e($where) ;

Creating Model Relationships

Because even most rudimentary database-driven websites rely upon multiple related tables, it's fair
to say you'll spend a good deal of time writing code which manages and navigates these relations.

Easy PHP Websites with the Zend Framework 99

Recognizing this, the Zend developers integrated several powerful features capable of dealing
with related data. Notably, these features allow you to transparently treat a related row as another
object attribute. Of course, these relations are only available when a normalized database is used,
meaning you'll need to properly structure your database schema using primary and foreign keys.
To demonstrate how Zend_Db can manage relations, start by altering the ganes table to include a
foreign key which will reference arow within atable containing information about available gaming
platforms:

nysqgl >ALTER TABLE ganes ADD COLUWN platform.id TINYI NT UNSI GNED
->NOT NULL AFTER i d;

Next create the pl at f or ns table:

CREATE TABLE pl atforms (

id I NTEGER UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
name VARCHAR(255) NOT NULL,

abbrevi ati on VARCHAR(10) NOT NULL

);

Finally, create the Pl at f or mmodel, which we'll use to access the newly created pl at f or ns table:

%zf create db-table Platform

Once created, update the class found in PI at f or m php in the same manner we did with the Gare
model at the beginning of this chapter.

With the schema updated and necessary models in place you'll next need to configure the
relationships within your models. The ganes table is dependent upon the pl at f or s table, so let's
start by defining the Gare model's subservient role within the pi at f or mmodel. Updatethe Pl at f or m
model to include the protected attribute presented on Line 07 of the following listing:

01 cl ass Application_Mdel _DbTabl e_Pl at f orm ext ends Zend_Db_Tabl e_Abstr act

02 {

03

04 protected $_nane = 'platforns';
05 protected $_primary = 'id';

06

07 protected $_dependent Tabl es = array(' Applicati on_Mddel _DbTabl e_Gane');
08 }

Line 07 defines the relationship, informing Zend_Db of the existence of a column within the Gane
model which stores a foreign key pointing to a row managed by the PI at f or mmodel. If a model
happens to be a parent for more than one other model, for instance the Gare model is a parent to

Easy PHP Websites with the Zend Framework 100

the Rank and the Account Game models, you would revise the $_dependent Tabl es attribute to ook
likethis:

protected $_dependent Tabl es = array(' Applicati on_Mdel _DbTabl e_Rank', ' Applicati on_Mdel _DbTak

Returning to defining the relationship between the Gane and Pl at f or mmodels, you'll also need to
reciprocate the relationship within the Game model, albeit with somewhat different syntax because
this time we're referring to the parent Pl at f or mmodel:

01 protected $ referenceMap = array (
02 "Platformi => array (

03 ' col ums' => array('platform.id'),

04 'ref Tabl eC ass' => ' Applicati on_Mdel _DbTabl e_PI at f or m
05)

06);

In this snippet we're identifying the foreign keys found in the Game model's associated schema,
identifying both the column storing the foreign key (pl at f or m_i d), and the model that foreign key
represents (Pl at f or m). Of course, it's entirely likely for amodel to store multiple foreign keys. For
instance, amodel named Account might refer to three other models (St at e, Count ry, and Pl at f or m
the latter of which is used to identify the account owner's preferred platform):

protected $_referenceMap = array (
"State' => array (
' col ums' => array('state_id'),
'ref Tabl ed ass' => ' Applicati on_Mddel _DbTabl e_St at e’
)

untry' => array (
' col ums' => array('country_id'),
'ref Tabl ed ass' => ' Applicati on_Mdel _DbTabl e_Country'

"Platformi => array (
' col ums' => array('platform.id'),
"ref Tabl ed ass' => ' Applicati on_Mdel _DbTabl e_PI at f or m
)
IE

With the models' relationship configured, quite afew new possibilities suddenly become available.
For instance, you can retrieve a game's platform name using this simple call:

‘ $gane- >f i ndPar ent Row(' Appl i cati on_Mdel _DbTabl e_PI at f or m) - >nane;

Likewise, you can retrieve dependent rowsusing thef i ndDependent Rowset () method. For instance,
the following snippet will retrieve the count of games associated with the Xbox 360 platform
(identified by a primary key of 1):

Easy PHP Websites with the Zend Framework 101

$pl at f or nTabl e = new Appli cati on_Mddel _DbTabl e_Pl at f orn();

/] Retrieve the platformrow associated with the Xbox 360
$xbox360 = $pl at f or nrabl e->fi nd(1)->current();

/'l Retrieve all ganes associated with platformID 1
$ganes = $xbox360->fi ndDependent Rowset (' Appl i cati on_Model _DbTabl e_Gane');

/'l Display the nunber of ganes associated with the Xbox 360 platform
echo count ($ganes) ;

Alternatively, you can use a "magic method”, made available to related models. For instance,
dependent games can also be retrieved using the f i ndGane() method:

$pl at f or nTabl e = new Appli cati on_Mddel _DbTabl e_Pl at f orn();

/] Retrieve the platformrow associated with the Xbox 360
$xbox360 = $pl at f or nirabl e->fi nd(1)->current();

/'l Retrieve all ganes associated with platformID 1
$ganmes = $xbox360- >fi ndGane();

// Display the count
echo count ($ganes) ;

The method isnamed f i ndGane() because we're finding the platform's associated rows in the Gane
model. If the model happened to be named Ganes, we would use the method f i ndGanes() .

Finally, there's still another magic method at your disposal, in this case, fi ndGaneByPl at f or n() :

$pl at f or nTabl e = new Appl i cati on_Mdel DbTabl e_Pl at forn();

/! Retrieve the platformrow associated with the Xbox 360
$xbox360 = $pl at f or nTabl e->fi nd(1);

/!l Retrieve all ganes associated with platformID 1
$ganes = $xbox360->fi ndGaneByPI at f or n() ;

/1 Display the count
echo count ($ganes) ;

Note

The Zend Db component can also automatically perform cascading operations if your
database does not support referential integrity. This means you can configure your website
model to automatically remove all games associated with the Play Station 2 platform should

Easy PHP Websites with the Zend Framework 102

you decide to quit supporting this platform and delete it from the pl at f or ns table. Seethe
Zend Framework documentation for more information about this feature.

Sorting a Dependent Rowset

When retrieving aadependent result set (such as games associated with a particular platform), you'll
often want to sort these results according to somecriteria. To do so, you'll need to pass aquery object
into thefi ndDependent Rowset () method as demonstrated here:

$pl at f or nTabl e = new Appli cati on_Mddel _DbTabl e_Pl at f orn();
$ganeTabl e = new Appl i cati on_Mdel _DbTabl e_Gane();
$ganes = $pl at f or niTabl e- >f i ndDependent Rowset (
' Appl i cati on_Mbdel _DbTabl e_Gane', null,
$ganeTabl e- >sel ect () - >order (' nane')

)

JOINing Your Data

ORM solutions because they effectively abstract much of the gory SQL syntax that I've grown to
despise over the years. But being able to avoid the syntax doesn't mean you should be atogether
ignorant of it. In fact, ultimately you're going to need to understand some of SQL's finer pointsin
order to maximize its capabilities. This is no more evident than when you need to retrieve related
data residing within multiple tables, a technique known as joining tables.

Join Scenarios

If you're not familiar with the concept of a join, this section will serve to acquaint you with the
topic by working through several common scenarios which appear within any data-driven website
of moderate complexity.

Finding a User's Friends

The typical social networking website offers a means for examining a user's list of friends. There
are many ways to manage a user's social connections, however one of the easiest involves simply
using a table to associate each user's primary key with the friend's primary key. This table might
look like this:

CREATE TABLE friends (
id I NTEGER UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
account _id | NTEGER UNS| GNED NOT NULL,
friend_id | NTEGER UNSI GNED NOT NULL,
created_on TI MESTAMP NOT NULL

Easy PHP Websites with the Zend Framework 103

\);

L et'sbegin by examining the most basic type of join, known astheinner join. Aninner joinwill return
the desired rows whenever there is at least one match in both tables, the match being determined by
a shared value such as an account's primary key. So for example, you might use a join to retrieve
alist of aparticular account's friends

nysqgl >SELECT a. user nane FROM accounts a
->INNER JO N friends f ONf.friend_id = a.id WHERE f.account _id = 44;

This join requests the username of each account owner found in the fri ends table who is mapped
to afriend of the account owner identified by 44.

Determine the Number of Copies of a Game Found in Your Network

Suppose you would like to borrow a particular game, but know your friend John had already loaned
his copy to Carli. Chances are however somebody elsein your network owns the game, but how can
you know? Using asimplejain, it's possible to determine the number of copies owned by friends, a
feature integrated into GameNomad and shown in Figure 6.2.

Figure 6.2. Deter mining whether an account’'sfriend owns a game

You might notice in Figure 6.2 this feature is actually used twice; once to determine the number
of copies found in your network, and a second time to determine the number of copies found in
your network which are identified as being available to borrow. To perform the former task, use
this SQL join:

nmysql >SELECT COUNT(gu.id) FROM games_to_accounts gu
->INNER JO N friends f ONf.friend_id = gu.account_id
->WHERE f.account _id = 1 AND gu.gane_id = 3;

As an exercise, try modifying this query to determine how many copies are available to borrow.
Determining Which Games Have Not Been Assigned a Platform

In an effort to increase the size of your site's gaming catalog, you've acquired another website which
wasdedi cated to video gamereviews. Whiletheintegration of thiscatalog has significantly bolstered
the size of your database, the previous owner's lackadaisical data management practices left much
to be desired, resulting in both incorrect and even missing platform assignments. To review alist

Easy PHP Websites with the Zend Framework 104

of all video games and their corresponding platform (even if the platform is NULL), you can use a
join variant known as al€ft join.

While theinner join will only return rows from both tableswhen amatch isfound within each, aleft
joinwill return all rowsin the leftmost table found in the query even if no matching record isfound
in the "right" table. Because we want to review alist of all video games and their corresponding
platforms, even in caseswhere aplatform hasn't been assigned, theleft join servesasanideal vehicle:

nmysql >SELECT ganes.title, platformnms. nane FROM ganes
->LEFT JO N platforms ON ganes.platformid = platforms.id
->0ORDER BY ganes.title LIMT 10;

Executing this query produces results similar to the following:

Ace Conbat 4: Shattered Skies
Ace Conbat 5

Pl aystation 2
Pl aystation 2

I I I
I I I
Active Life Qutdoor Challenge	Nintendo Wi
Advance Wars: Days of Ruin	Nintendo DS
Anerican Grl Kit Mystery Challenge	Nintendo DS
Anplitude	Playstation 2
Aninal Crossing: WId Wrld	Nintendo DS
Aninal Genius	Nintendo DS
Ant Bully	NULL
Atelier Iris Eternal Mna	Playstation 2
fmoceooc--cco-—c--ccooc--ccoo---ccooo-=o foocosc-occo-o== +

Note how the game "Ant Bully" has not been assigned a platform. Using an inner join, this row
would not have appeared in the listing.

Counting Users by State

As your site grows in terms of registered users, chances are you'll want to create a few tools for
analyzing statistical matters such as the geographical distribution of users according to state. To
create a list tallying the number of registered users according to state, you can use a right join,
which will list every record found in the right-side table, even if no users are found in that state. The
following example demonstrates the join syntax used to perform this calculation:

nmysql >SELECT COUNT(accounts.id), states.nane
->FROM accounts RIGHT JO N states ON accounts.state_id = states.id
->CGROUP BY st at es. nane;

Executing this query produces output similar to the following:

Easy PHP Websites with the Zend Framework 105

145	New York
18	North Carolina
0	North Dakota
43	Ghio
22	Gkl ahoma
15	Oregon
77	Pennsyl vani a

As even these relatively simple examples indicate, join syntax can be pretty confusing. The best
advice | can give you is to spend an afternoon leisurely experimenting with the data, creating and
executing joins which allow you to view the datain new and interesting ways.

Creating and Executing Zend_Db Joins

Now that you have a better understanding of how joins work, let's move on to how the Zend_Db
makes it possible to integrate joins into your website. To demonstrate this feature, consider the
following join query, which retrieves a list of a particular account's (identified by the primary key
3) friends:

nmysql >SELECT a.id, a.usernanme FROM accounts a
->JON friends ON friends.friend_id = a.id
->WHERE friends. account _id = 3;

Using Zend Db's join syntax, you might rewrite this join and place it within a method named
get Fri ends() found inthe Appli cati on_Mdel DbTabl e_Account Rowmodel:

01 function getFriends()

02 {

03 $account Tabl e = new Appl i cati on_Mdel _DbTabl e_Account () ;

04 $query = $account Tabl e- >sel ect () ->set I ntegrityCheck(fal se);

05 $query->from(array('a’ => 'accounts'), array('a.id, 'a.usernanme'));
06 $query->join(array('f' => 'friends'), 'f.friend_id = a.id', array());
07 $query->where(' f.account _id = ?', $this->id);

08

09 $resul ts = $account Tabl e->f et chAl | ($query);

10 return $results;

11 }

Let's break this down:

e ThesetlIntegrityCheck() method used in Line 04 defines the result set as read only, meaning
any attempts to modify or delete the result set will cause an exception to be thrown. Although

Easy PHP Websites with the Zend Framework 106

most developers find this Zend Framework-imposed requirement confusing, it does come with
the benefit of reminding you that any result set derived from ajoin is read-only.

» Line 05 identifies the left side of the join, in this case the account s table. You'll also want to
pass along an array containing the columns which are to be selected, otherwise all column will
by default be selected.

» Line 06 identifiesthejoined table, and join condition. If you'd like to select specific columns from
the joined table, pass those columns along in an array as was done in line 05; otherwise passin
an empty array to select no columns.

 Line 07 defines a WHERE clause, which will restrict the result set to a specific set of rows. In this
case, we only want rows in which the fri ends tabl€'s account _i d column is set to the value
identified by $t hi s- >i d.

You'll come to find the Zend_Db's join capabilities are particularly useful as your site grows in
complexity. When coupled with Zend_Db's relationship features, it's possible to create impressively
powerful data mining features with very little code.

Creating and Managing Views

Y ou've seen how separating the three tiers (Model, View, and Controller) can make your life much
easier. This particular chapter has so far focused on the Model asiit relates to Zend_Db, aong the
way showing you how to create some fairly sophisticated SQL queries. However there's still further
you can go in terms of separating the database from the application code.

Most relational databases offer afeature known as anamed view, which you can think of asasimple
way to refer to acomplex query. Thisquery might involve retrieving data from numeroustables, and
may evolve over time, sometimes by the hand of an experienced database administrator. By moving
the query into the database and providing the devel oper with asimple aliasfor referring to the query,
the administrator can manage that query without having to necessarily also change any code found
within the application. Even if you're a solo devel oper charged with both managing the code and the
database, views are nonetheless a great way to separate these sorts of concerns.

Creating a View

Producing alist of the most popular games found in GameNomad according to their current sales
rankingsis a pretty commonplace task. Believeit or not, the query used to retrieve this dataisfairly
involved:

Easy PHP Websites with the Zend Framework 107

nysql >SELECT MAX(ranks.id) AS id, ganes.nane AS nane, ganes.asin AS asin,
->ganes. platformid AS platform.d,
->ranks. rank AS rank
- >FROM ganes
->JA N ranks
->ON ganes.id = ranks. ganme_i d
->GROUP BY ranks. gane_i d
- >ORDER BY ranks.rank LIMT 100;

Although by no meansthe most complex of queries, it's nonethelessamouthful. Wouldn't it be much
more straightforward if we can simply call this query using the following aias:

nmysql >SELECT vi ew_| at est _sal es_r anks;

Using MySQL's view feature, you can do exactly this! To create the view, login to MySQL using
the mysgl client or phpMyAdmin and execute the following command:

nmysql >CREATE VI EW vi ew_| at est _sal es_ranks AS
->SELECT MAX(ranks.id) AS id, ganes.nane AS name, ganes.asin AS asin,
->ganes. platformid AS platform.id,
->ranks. rank AS rank
->FROM ganes JA N ranks
->0ON ganes.id = ranks. ganme_id
->CGROUP BY ranks.gane_id
->ORDER BY ranks.rank LIMT 100;

Tip

View creation statements are not automatically updated to reflect any structural or naming
changes you make to the view's underlying tables and columns. Therefore if you make any
changes to the tables or columns used by the view which reflect the view's SQL syntax,
you'll need to modify theview accordingly. Modifying aview isdemonstrated in the section
"Reviewing View Creation Syntax".

Adding the View to the Zend Framework

The Zend Framework recognizes views as it would any other database table, meaning you can build
amodel around it!

<?php

cl ass Application_Mdel _DbTabl e_Vi ewlLat est Sal esRanks ext ends Zend_Db_Tabl e_Abstr act
{

Easy PHP Websites with the Zend Framework 108

protected $_nane = '|atest_sal es_ranks';
protected $_primary = "id';

protected $_referenceMap = array (
"Platformi => array (
' col ums' => array('platform.id'),
'ref Tabl ed ass' => ' Applicati on_Mdel _DbTabl e_PI at f or m

?>

Deleting a View

Should you no longer require a view, consider removing it from the database for organizational
reasons. To do so, use the DROP VI Ewstatement:

‘ nmysql >DROP VI EW | at est _sal es_r anks;

Reviewing View Creation Syntax

Y ou'll often want to make modificationsto aview over itslifetime. For instance, when | first created
thevi ew | at est _sal es_ranks view, | neglected to limit the results to the top 100 games, resulting
inalist of the top 369 games being generated. But recalling the view's lengthy SQL statement isn't
easy, so how can you easily retrieve the current syntax for modification? The SHOW CREATE VI EW
statement solves this dilemmanicely:

nmysql >SHOW CREATE VI EW | at est _sal es_ranks\ G

Vi ew. | at est_sal es_ranks

Create View CREATE ALGORI THVEUNDEFI NED DEFI NER="r oot * @I ocal host *
SQ. SECURI TY DEFI NER VI EW " | at est _sal es_ranks™ AS

select max('ranks . id) AS "id, games . title AS “title",
‘ganes . asin AS ‘asin, ganes . platformid AS ‘platform.id,
‘ranks’ . rank’ AS ‘rank’ from (" ganmes’ join "ranks’

on((‘ganmes”. id" = ‘ranks . gane_id)))

group by “ranks’ . game_id order by “ranks'. rank’
character_set_client: latinl

col I ati on_connection: |atinl_swedish_ci

We're particularly interested in the three lines beginning with "1 atest _sal es_ranks", as this
signifies the start of the query. It looks different from the original SQL statement because MySQL

Easy PHP Websites with the Zend Framework 109

takes care to delimit all table and column names using backticks to account for special characters or
reserved words. Y ou can however reuse this syntax when modifying the query so copy those lines
to your clipboard. Next, remove the query using DROP VI EW

nysqgl >DROP VI EW | at est _sal es_r anks;

Now recreate the view using CREATE VI EW pasting in the syntax but modifying the syntax by adding
LIMIT 100 to the end of the query:

nysqgl >CREATE VI EW | at est _sal es_ranks | atest_sal es_ranks’

AS select max("ranks . id) AS "id, ganes . title AS “title’,
‘ganes . asin AS ‘asin, ganes . platformid AS ‘platform.id,
‘ranks’ . rank’ AS ‘rank’ from (ganmes’ join "ranks’

on(("games”. id" = ‘ranks . ganme_id’))) group by “ranks’ . ganme_id’
order by “ranks . rank® ASC LIMT 100;

Paginating Results with Zend_Paginator

For reasons of performance and organization, you're going to want to spread returned database
results across several pagesif alengthy number are returned. However, doing so manualy can be a
tedious chore, requiring you to track the number of results per page, the page number, and the query
results current offset. Recognizing thisimportance of such afeature, the Zend Framework developers
created the Zend_Paginator component, giving devel opersan easy way to paginateresult setswithout
having to deal with al of the gory details otherwise involved in a custom implementation.

The Zend Paginator component is quite adept, capable of paginating not only arrays, but also
database results. It will also autonomously manage the number of results returned per page and the
number of pages comprising the result set. In fact, Zend_Paginator will even create aformatted page
navigator which you can insert at an appropriate location within the results page.

In this section I'll show you how to paginate a large set of video games across multiple pages.

Create the Pagination Query

Next you'll want to add the pagination feature to your website. | find the Zend_Paginator
component appealing because it can be easily integrated into an existing query (which was
presumably previously returning all results). All you need to do is instantiate a new instance of the
Zend_Paginator class, passing the query to the object, and Zend_Paginator will do the rest. The
following script demonstrates this feature:

01 function get GanesByPl atforn($id, $page=1, $order="title")
02 {

Easy PHP Websites with the Zend Framework 110

03 S$query = S$this->select();

04 $query->where('platformid = ?', $id);

05 $query->order ($order);

06

07 $pagi nat or = new Zend_Pagi nat or (new Zend_Pagi nat or _Adapt er _DbTabl eSel ect ($query));
08 $pagi nat or - >set | t enCount Per Page($pagi nat i onCount) ;

09 $pagi nat or - >set Cur r ent PageNunber ($page) ;

10 return $pagi nator;

11 }

Let's break down this method:

 Lines03-05 create the query whose results will be paginated. Because the method's purposeisto
retrieve a set of video gamesidentified according to a specific platform (Xbox 360 or Playstation
3forinstance), the query acceptsaplatform D (si d) asaparameter. Further, should the devel oper
wish to order the results according to a specific column, he can pass the column name along using
the $order parameter.

e Line 07 creates the paginator object. When creating this object, you're going to pass
aong one of several available adapters. For instance, the zend_Pagi nat or _Adapt er _Array()
tells the Paginator well be paginating an array. In this example, we use
Zend_Pagi nat or _Adapt er _DbTabl eSel ect (), because were paginating results which
have been returned as instances of Zzend_Db_Tabl e_Rowset_Abstract. When using
Zend_Pagi nat or _Adapt er _DbTabl eSel ect (), you'll passin the query.

* Line 08 determines the number of results which should be returned per page.

» Line 09 sets the current page number. Thiswill of course adjust according to the page currently
being viewed by the user. In amoment I'll show you how to detect the current page number.

» Line 10 returnsthe paginated result set, adjusted according to the number of results per page, and
the offset according to our current page.

Using the Pagination Query

When using Zend_Paginator, each page of returned results will be displayed using the same
controller and view. Zend_Paginator knows which page to return thanks to a page parameter which
is passed along viathe URL. For instance, the URL representing the first page of resultswould look
likethis:

htt p://gamenomad. conl ganes/ pl at f or ml i d/ xbox360

Easy PHP Websites with the Zend Framework 111

The URL representing the fourth page of results would typically look like this:

htt p: // ganmenomad. coni ganes/ pl at f or nl i d/ xbox360/ page/ 4

Although I'll formally introduce this matter of retrieving URL parametersin the next chapter, there's
nothing wrong with letting the cat out of the bag now, so to speak. The Zend Framework looks at
URLs using the following pattern:

http://ww. exanpl e.comf : control | er/:action/:key/:val ue/: key/:value/.../:key/val ue

This means following the controller and action you can attach parameter keys and corresponding
values, subsequently retrieving these values according to their key names within the action. So for
instance, in the previous URL the keys areid and page, and their corresponding values are xbox360
and 4, respectively. You can retrieve these values within your controller action using the following
commands:

$pl at f orm = $t hi s->_request ->get Paran('id');
$page = $t hi s->_request - >get Paran(' page');

What's more, using afeature known as custom routes, you can tell the framework to recognize URL
parameters merely according to their location, thereby negating the need to even preface each value
with a key name. For instance, if you head over to GameNomad you'll see the platform-specific
game listings actually use URLslike this:

http://gamenomad. coni ganes/ pl at f or mf xbox360/ 4

Although not required knowledge to make the most of the Zend Framework, creating custom routes
isextremely easy to do, and once you figure them out you'll wonder how you ever got along without
them. Head over to http://framework.zend.com/manual/en/zend.controller.router.html to learn more
about them.

With the platform and page number identified, all that's left to do is call the Game model's
get GanesByPI at f or n{) method to paginate the results:

$game = new Def aul t _Gane_Model () ;
$t hi s->vi ew >pl at f or nGanes = $gane- >get GanesByPl at f or n($pl at f orm $page) ;

Within the view, you can iterate over the $t hi s- >pl at f or nGames just as you would anywhere else:

<?php if (count($this->platfornmGanes) > 0) { ?>
<?php foreach ($this->platfornGanmes AS $gane) { ?>
echo "{$gane->nane}
";
<?php } ?>
<?php } ?>

Easy PHP Websites with the Zend Framework 112

Adding the Pagination Links

Theuser will need an easy and intuitive way to navigate from one page of resultsto the next. Thislist
of linked page numbersistypically placed at the bottom of each page of output. The Zend_Paginator
component can take care of the list generation for you, al you need to do is pass in the returned
result set (in this case, $t hi s- >pl at f or nGanes), the type of pagination control you'd liketo use (in
this case, Sliding), and the view helper used to stylize the page numbers:

<?= $t hi s- >pagi nati onCont r ol ($t hi s->pl at f or nGanes
"Sliding', 'ny_pagination.phtm"'); ?>

The Sliding control will keep the current page number in the middle of page range. Severa other
control typesexist, including Al I , El ast i ¢, and Junpi ng. Try experimenting with each to determine
which one you prefer. The view helper works like any other, although several special properties
are made available to it, including the total number of pages contained within the results ($t hi s-
>pageCount), the next page number (st hi s- >next), the previous page ($t hi s- >previ ous), and
several others. Personally | prefer to use one which is almost identical to that found in the Zend
Framework documentation, which I'll reproduce here:

<?php if ($this->pageCount): ?>
<di v cl ass="pagi nati onControl ">

<l-- Previous page link -->
<?php if (isset($this->previous)): ?>
<a href="<?= $this->url (array(' page' => $this->previous)); ?>">& t; Prev
<?php el se: ?>
& t; Previ ous
<?php endif; ?>

<!-- Nunbered page |links -->
<?php foreach ($this->pagesl nRange as $page): ?>
<?php if ($page != $this->current): ?>
<a href="<?= $this->url (array(' page' => $page)); ?>"><?= $page; ?>
<?php el se: ?>
<?= $page; ?>
<?php endif; ?>
<?php endf oreach; ?>

<l-- Next page link -->
<?php if (isset($this->next)): ?>
<a href="<?= $this->url (array(' page' => $this->next)); ?>">Next >
<?php el se: ?>
Next > ; </ span>
<?php endif; ?>

Easy PHP Websites with the Zend Framework 113

</ di v>
<?php endif; ?>

Of course, to take full advantage of the stylization opportunities presented by a pagination control
such as this, you'll need to define CSS elements for the pagi nati onCont r ol and di sabl ed classes.

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

* Define object-relational mapping (ORM) and talk about why its an advantageous approach to
programmatically interacting with a database.

e Given amodel named Appl i cati on_Model _DbTabl e_Gane, what will Zend Db assume to be the
name of the associated database table? How can you override this default assumption?

» What are the names and purposes of the native Zend Db methods used to navigate model
associations?

Chapter 7. Chapter 7. Integrating
Doctrine 2

The Zend_Db component (introduced in Chapter 6) does a pretty good job of abstracting away many
of the tedious SQL operations which tend to clutter up atypical PHP-driven website. Implementing
two powerful data access patterns, namely Table Data Gateway and Row Data Gateway, Zend Db
users have the luxury of interacting with the database using a convenient object-oriented interface.

Andif that summed up the challenges when integrating a database into an application, we'd be sitting
pretty. But the Zend_Db component isn't so much adefinitive solution asit isa starting point, and the
Zend Framework documentation isquite clear on thismatter, even going so far asto provideatutorial
which explains how to create Data Mappers which transfer data between the domain objects and
relational database. While there's no doubt Zend_Db provides a solid starting foundation, | wonder
how many users have the patience to implement a complete data management solution capable of
meeting their application's complex domain requirements. | sure don't.

Always preferring the path of least resistance, I've been closely monitoring efforts to integrate
Doctrine (http://www.doctrine-project.org/) into the Zend Framework. Although integrating
Doctrine 1.X was afairly painful process, it has become much less so with the Doctrine 2 release.
Apparently the Zend Framework developers agree that Doctrine is a preferred data persistence
solution, as Zend Framework 2 is slated to include support for Doctrine 2. In the meantime, no
official documentation exists for Doctrine 2 integration, therefore rather than guide you through a
lengthy and time-consuming configuration process which is certain to change I've instead opted to
introduce you to Doctrine 2 using a Doctrine 2-enabled Zend Framework project which isincluded
in the book's code download. This project is found in the directory z2d2. You'll need to update the
application.ini fileto define your database connection parameters and a few related paths but
otherwise you should be able to begin experimenting with the integration simply by associating the
project with avirtual host asyou would any other Zend Framework-driven website. If you can't bear
to go without knowing exactly every gory integration-related detail, see the project's README file.
Il use this project's code as the basis for introducing key Doctrine 2 features, highlighting those
which I've grown to find particularly indispensable.

Caution

Doctrine 2 requires PHP 5.3, meaning you won't be able to use it until you've upgraded to
at least PHP 5.3.0. PHP 5.3 supports several compelling new features such as namespaces,

Easy PHP Websites with the Zend Framework 115

so if you haven't already upgraded | recommend doing so even if you wind up not using
Doctrine 2.

Introducing Doctrine

The Doctrinewebsite definesthe project as an " obj ect-rel ational mapper for PHP which sitson top of
apowerful database abstraction layer”. This strikes me as arather modest description, as Doctrine's
programmatic interface is nothing short of incredible, supporting the ability to amost transparently
marry your domain models with Doctrine's data mappers, as demonstrated in this example which
adds a new record to the database:

$em = $t hi s->_hel per->Enti t yManager () ;
$account = new \Entities\Account;

$account - >set User name(' wj gi | nore') ;
$account - >set Emai | (‘' W @\ gi | nore. com) ;
$account - >set Passwor d(' j ason');
$account - >set Zi p(' 43201");

$em >per si st ($account) ;

$em >f | ush();

Doctrine can also traverse and manipul ate even the most complex schemarel ations using remarkably
little code. Consider this example, which adds the game "Super Mario Brothers' to a user's video
gamelibrary:

$em = $thi s->_hel per->EntityManager();

$account = $em >get Repository(' Entities\Account')
->f i ndOneByUser name(' wj gi | nore') ;

$gane = $em >get Reposi tory(' Entiti es\Gane')
->f i ndOneByNane(' Super Mario Brothers');

$account - >get Ganes() - >add($gane) ;

$em >per si st ($account) ;
$em >f | ush();

Later in this chapter I'll provide several examples demonstrating its relationship mapping
capabilities.

Incidentally, thefi ndoneByUser nane() method used in the above exampleis another great Doctrine
feature, known as a magic finder. Doctrine dynamically makes similar methods available for all of

Easy PHP Websites with the Zend Framework 116

your table columns. For instance, if atable includes apubl i cati on_dat e column, a finder method
named f i ndByPubl i cat i onDat e() will automatically be made available to you!

Iterating over an account's game library isincredibly easy. Just iterate over the results returned by
$account - >get Ganes() method like any other object array:

foreach ($user->get Ganes() as $gane)

echo "{$ganme->title}
";

}

Doctrine's capabilities extend far beyond its programmatic interface. You can use it's CLI
(command-line interface) to generate and update schemas, and can use YAML, XML or (my
favorite) DocBlock annotations to define column names, data types, and even table associations. I'll
talk about these powerful features in the section "Building Persistent Classes'.

Note

Doctrine 2 is a hefty bit of software, so athough this chapter provides you with enough
information to get you started, it doesn't even scratch the surface in terms of Doctrine's
capabilities. My primary goal is to provide you with enough information to get really
excited about the prospects of using Doctrine within your applications. Of course, | aso
recommend reviewing the GameNomad code, as Doctrine 2 is used throughoui.

Introducing the z2d2 Project

Figuring out how to integrate Doctrine 2 into the Zend Framework was a pretty annoying and
time-consuming process, one which involved perusing countless blog posts, browsing GitHub code,
and combing over the Doctrine and Zend Framework documentation. The end result is however a
successful implementation, one which I've subsequently successfully integrated into the example
GameNomad website. However, because the GameNomad website is fairly complicated |'ve opted
to stray from the GameNomad theme and instead focus on a project which is much smaller in scope
yet nonethel ess manages to incorporate several crucial Doctrine 2 features. I've dubbed this project
z2d2, and it's available as part of your code download, located in the z2d2 directory.

The project incorporates fundamental Doctrine features, including DocBlock annotations, use of the
Doctrine CLI, magic finders, basic CRUD features, and relationship management. I'll use the code
found in this project as the basis for instruction throughout the remainder of this chapter, so if you
haven't already downloaded the companion code, go ahead and do so now.

Easy PHP Websites with the Zend Framework 117

Key Configuration Files and Parameters

As | mentioned at the beginning of this chapter, the Daoctrine integration processis afairly lengthy
process and one which will certainly change with the eventual Zend Framework 2 release. However
soasnot toentirely leaveyouinthedark I'd liketo at |east provide an overview of the sampleproject's
files and configuration settings which you'll need to understand in order to integrate Doctrine 2 into
your own Zend Framework projects:

Theapplication/ configs/application.ini filecontains nine configuration parameters which
Doctrine uses to connect to the database and determine where the class entities and proxies are
located.

Thelibrary/ Doctrine directory contains three directories: Common, DBAL, and oRM These three
directories contain the object relational mapper, database abstraction layer, and other code
responsible for Doctrine's operation.

Theli brary/ W@ Resour ce/ Ent i t ymanager . php file contains the resource plugin which defines
the entity manager used by Doctrine to interact with the database.

The appl i cati on/ Boot st rap. php file contains a method named _i nit Doctrine() which is
responsible for making the class entities and repositories available to the Zend Framework
application.

The library/ WG Control | er/ Acti on/ Hel per/ Enti t yManager . php file is an action helper
which isreferenced within the controllersinstead of the lengthy call which would otherwise have
to be made in order to retrieve areference to entity manager resource plugin.

The appl i cation/ script s/ doctrine. php file initializes the Doctrine CLI, and bootstraps the
Zend Framework application resources, including the entity manager resource plugin. The CLI is
run by executing the doct ri ne script, also found in appl i cati on/ scri pts.

Theappl i cati on/ nodel s/ Enti ti es directory contains the class entities. I'll talk more about the
purpose of entitiesin alater section.

The appl i cat i on/ nodel s/ Reposi t ori es directory contains the class repositories. I'll talk more
about the role of repositoriesin alater section.

The appl i cati on/ nodel s/ Proxi es directory contains the proxy objects. Doctrine generates
proxy classes by default, however the documentation strongly encourages you to disable
autogeneration, which you can do inthe appl i cation/ config.ini file.

Easy PHP Websites with the Zend Framework 118

Building Persistent Classes

In my opinion Doctrine'smost compelling featureisits ability to make PHP classes persistent smply
by adding DocBlock annotations to the class, meaning that merely adding those annotations will
empower Dactrine to associate CRUD features with the class. An added bonus of these annotations
isthe ability to generate and maintain table schemas based on the annotation declarations.

These annotations are added to your model in avery unobtrusive way, placed within PHP comments
spread throughout the class file. The below listing presents a ssimplified version of the Account
entity found in appl i cati on/ model s/ Enti ti es/ Account . php, complete with the annotations. An
explanation of key lines follows the listing.

01 <?php

02

03 nanespace Entities;

04

05 /**

06 * @ntity @abl e(nane="ganes")
07 */

08 cl ass Game

09 {

10 /**

11 * @d @ol um(type="integer")
12 * @zener at edVal ue(strat egy="AUTO")

13 */
14 private $id,
15

16 [** @ol um(type="string", |ength=255) */

17 private $nang;

18

19 [** @ol um(type="string", |ength=255) */

20 private $publisher;

21

22 [** @ol um(type="deci mal ", scal e=2, precision=5) */
23 private $price;

24

25 public function getld()
26 {

27 return $this->id,

28 }

29

30 public function get Name()
31 {

32 return $this->nang;

33 }

34

Easy PHP Websites with the Zend Framework 119

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

public function set Name($nane)

$t hi s->nanme = $nane;

}

public function setPassword($password)

{
$t hi s- >password = nd5($password) ;

}

public function getPrice()

{

return $this->price;

}

public function setPrice($price)

{
$t hi s->price = $price;

}
}

Let's review the code:

Line 03 declares this class to be part of the namespace Ent i ti es. Doctrine refers to persistable
classes as entities, which are defined as objects with identity. Therefore for organizational
purposes I've placed these persistable classes in athe directory appl i cati on/ model s/ Enti ti es,
and use PHP 5.3's namespacing feature within the controllersto reference the class, which ismuch
more convenient than using the underscore-based approach embraced by the Zend Framework
(which is unavoidable since namespaces are a PHP 5.3-specific feature). Therefore while it's
not a requirement in terms of making a class persistable, | nonetheless suggest doing it for
organizational purposes.

Line 06 declares the class to be an entity (done using the @nt i t y annotation). Doctrine will by
default map the class to a database table of the same name as the class, however if you prefer to
use adifferent name then you can override the default using the @rabl e annotation.

Lines 11-14 define an automatically incrementing integer-based primary key namedi d.

Line 16 defines a column named nane using typevar char of length 255. Doctrine will by default
define this column as NOT NULL.

Easy PHP Websites with the Zend Framework 120

 Line 22 defines acolumn named pri ce using type deci mal of scale 2 and precision s.
» Lines25-57 definethe gettersand setters (accessors and mutators) used to interact with this object.

You are free to modify these methods however necessary. For instance, check out the project's
Account model, which encrypts the supplied password using PHP's md5() function.

Note
DocBlock annotations are only one of several supported solutions for building database
schemas. Other schemadefinition optionsare available, including using Y AML- and XML-

based formats. See the Doctrine 2 documentation for more details.

Generating and Updating the Schema

With the entity defined, you can generate the associated table schema using the following command:

$ cd application
$./scripts/doctrine ormschema-tool:create
ATTENTI ON: This operation should not be executed in an production environent.

Creating database schena. ..
Dat abase schena created successfully!

If you make changes to the entity, you can update the schema using the following command:
$./scripts/doctrine orm:schema-tool :update --force

It goes without saying that this feature is intended for use during the development process, and
should not be using this command in a production environment. Alternatively, you can pass this
command the - - dunp- sql to obtainalist of SQL statementswhich can subsequently be executed on
the production server. Or better, consider using a schema management solution such as Liquibase
(http://www.liguibase.org).

Finally, you can drop all tables using the following command:

$./scripts/doctrine ormschena-tool:drop --force
Dr oppi ng dat abase schenz. ..
Dat abase schena dropped successfully!

With your entities defined and schemas generated, move on to the next section where you'll learn
how to query and manipulate the database tables via the entities.

Easy PHP Websites with the Zend Framework 121

Querying and Manipulating Your Data

One of Doctrine's most compelling featuresis its ability to map table schemas to an object-oriented
interface. Not only can you use the interface to conveniently carry out the usual CRUD (create,
retrieve, update, delete) tasks, but Doctrine will also make your life even easier by providing a
number of so-called "magic finders' which allow you to explicitly identify the argument you're
searching for as part of the method name. In this section I'll show you how to use Doctrineto retrieve
and manipulate data.

Inserting, Updating, and Deleting Records

Whether its creating user accounts, updating blog entries, or deleting comment spam, you're
guaranteed to spend a great deal of time developing features which insert, modify, and delete
database records. In this section I'll show you how to use Doctrin€e's native capabilities to perform
all three tasks.

Inserting Records

Unless you've already gone ahead and manually inserted records into the tables created in the
previous section, the z2d2 database is currently empty, so let's begin by adding a new record:

01 $em = $t hi s->_hel per->EntityManager();

02

03 $account = new \Entities\Account;

04

05 $account - >set Usernane(' W gi l nore');

06 $account - >set Enai | (' exanpl e@\ gi | nore. conl) ;
07 $account - >set Password('j ason');

08 $account - >set Zi p(' 43201");

09 $em >persi st ($account);

10 $em >flush();

Let'sreview this example:

» LineOl retrieves an instance of the Doctrine entity manager. The Doctrine documentation defines
the entity manager "as the central access point to ORM functionality”, and it will play a centra
rolein all of your Doctrine-related operations.

» Line03createsanew instance of the Account entity, using the namespacing syntax made available
with PHP 5.3.

Easy PHP Websites with the Zend Framework 122

e Lines 05-08 set the object's fields. The beauty of this approach is that we have encapsulated
domain-specific behaviors within the class, such as hashing the password using PHP's nd5()
function. See the Account entity file to understand how this is accomplished.

 Line 09 usesthe entity manager's per si st () method that you intend to make this data persistent.
Note that this does not write the changes to the database! Thisisthejob of thefl ush() method
found on line 10. The f 1 ush() method will write al changes which have been identified by the
persi st () method back to the database.

Note

It'spossibleto fully decoupl ethe entity manager from the application controllersby creating
a service layer, however I've concluded that for the purposes of this exercise it would
perhaps be overkill as it would likely only serve to confuse those readers who are being
introduced to thistopic for the first time. In the coming weeks I'll release a second version
of z2d2 which implements a service layer, should you want to know more about how such
afeature might be accomplished.

Modifying Records

Modifying a record couldn't be easier; just retrieve it from the database, use the entity setters to
change the attributes, and then save therecord using theper si st () /1 ush() methodsdemonstrated
in the previous example. I'm getting ahead of myself due to necessarily needing to retrieve arecord
in order to modify it, however the method name used to retrieve the record is quite self-explanatory:

$accounts = $em >get Repository(' Entities\Account")
->fi ndOneByUser name(' W gi | nore');

$account - >set Zi p(' 20171");

$em >per si st ($account) ;

$em >f | ush();

Deleting Records

To delete arecord, you'll pass the entity object to the entity manager'sr erove() method:

$accounts = $em >get Repository(' Entities\Account")
->f i ndOneByUser name(' wj gi | nore') ;

$em >r enove($account) ;

$em >f | ush();

Easy PHP Websites with the Zend Framework 123

Finding Records

Let's start with Doctrine's most basic finder functionality, beginning by finding a game according
toits primary key. You'll query entities viatheir repository, which is the mediator situated between
the domain model and data mapping layer. Doctrine provides this repository functionality for you,
although as you'll learn later in this chapter it's possible to create your own entity repositories
which allow you to better manage custom queries related to the entity. For now though let's just
use the default repository, passing it the entity we'd like to query. We can use method chaining to
conveniently call the default repository'sfi nd() method, as demonstrated here:

01 $em = $t hi s->_hel per->EntityManager();

02

03 $account = $em >get Repository(' Entities\Account')->find(1);
04

05 echo $account - >get User name() ;

With the record retrieved, you're free to use the accessor methods defined in the entity, as line 05
demonstrates.

To retrieve a record which matches a specific criteria, such as one which has its user nane set to
w gi | mor e, you can pass the column name and value into the f i ndoneBy() method via an array, as
demonstrated here:

$accounts = $em >get Repository(' Entities\Account")
->findOneBy(array(' username' => 'wjgilnore'));

Magic Finders

| find the syntax used in the previous example to be rather tedious, and so prefer to use the many
magic finders Doctrine makes available to you. For instance, you can use the following magic finder
to retrieve the very same record as that found using the above example:

$account = $em >get Repository(' Entities\Account')
->f i ndOneByUser name(' wj gi | nore') ;

Magic finders are available for retrieving records based on all of the columns defined in your table.
For instance, you can usethefi ndByzi p() method to find all accounts associated with the zip code
43201:

$accounts = $em >get Repository(' Entities\Account")
->findByZi p(' 43201");

Because results are returned as arrays of objects, you can easily iterate over the results:

Easy PHP Websites with the Zend Framework 124

foreach ($accounts AS $account)

echo "{$account - >get User nanme() }
";

}

As youll learn in the later section "Defining Repositories’, it's even possible to create your own
so-called "magic finders" by associating custom repositories with your entities. In fact, it's almost
a certainty that you'll want to do so, because while the default magic finders are indeed useful
for certain situations, you'll find that they tend to fall short when you want to search on multiple
conditions or order results.

Retrieving All Rows

Toretrieve all of therowsin atable, you'll usethefindal I () method:

$accounts = $em >get Repository(' Entities\Account')->findAl();
foreach ($accounts AS $account)

echo "{$account - >get User nanme() }
";

}

Introducing DQL

Very often you'll want to query your models in ways far more exotic than what has been illustrated
so far in this section. Fortunately, Doctrine provides a powerful query syntax known asthe Doctrine
Query Language, or DQL, which you can use construct queries capable of parsing every imaginable
aspect of your object model. While it's possible to manually write queries, Doctrine also provides
an API caled QueryBuilder which can greatly improve the readability of even the most complex
gueries. For instance, the following example queries the Account model for all accounts associated
with the zip code 20171, and ordering those results according to the user name column:

$gb = $em >creat eQuer yBui | der () ;

$gb- >add(' select’', 'a')
->add(' from, 'Entities\Account a')
->add(' where', 'a.zip = :zip')
->add(' orderBy', 'a.username ASC)
->set Paraneter('zip', '20171");

$query = $qgb- >get Query();

$accounts = $query->get Resul t();

Easy PHP Websites with the Zend Framework 125

foreach ($accounts AS $account)

echo "{$account - >get User nanme() }
";

}

It's even possible to execute native queries and map those results to objects using a new Doctrine 2
feature known as Native Queries. See the Doctrine manual for more information.

Logicaly you're not going to want to embed DQL into your controllers, however the domain model
isn't an ideal location either. The proper location is within methods defined within custom entity
repositories. I'll show you how thisis donein the later section "Defining Repositories”.

Managing Entity Associations

All of theexamples provided thusfar are useful for becoming familiar with Doctrine syntax, however
even a relatively simple real-world application is going to require significantly more involved
gueries. In many cases the queries will be more involved because the application will involve
multiple domain models which are interrelated.

Unless you're a particularly experienced SQL wrangler, you're probably well aware of just
how difficult it can be to both build and mine these associations. For instance just the three
tables (account s, ganes, account s_games) which you generated earlier in this chapter pose some
significant challenges in the sense that you'll need to create queries which can determine which
games are associated with a particular account, and also which accounts are associated with a
particular game. You'll also need to create features for associating and disassociating games with
accounts. If you're new to managing these sorts of associations, it can be very easy to devise
incredibly awkward solutions to manage these sort of relations.

Doctrine makes managing even complex associations laughably easy, allowing you to for instance
retrieve the games associated with a particular account using intuitive object-oriented syntax:

$account = $em >get Repository(' Entities\Account')
->f i ndOneByUser name(' wj gi | nore') ;

$games = $account - >get Games() ;
printf("% owns the follow ng ganes:
", $account->get Username());

foreach ($ganes AS $gane)
{

}

printf("%
", $gane->getNanme());

Easy PHP Websites with the Zend Framework 126

Adding games to an account's library is similarly easy. Just associate the game with the account by
passing the game object into the account's add() method, as demonstrated here;

$em = $t hi s->_hel per->Enti t yManager () ;

$account = $em >get Repository(' Entities\Account')
->fi ndOneByUser name(' W gi | nore');

$gane = $em >get Repository(' Entities\Gane')
->fi ndOneByNane(' Super Mario Brothers');

$account - >get Ganes() - >add($gane) ;

$em >per si st ($account) ;
$em >f | ush();

To remove agame from an account's library, use the r enoveEl ement () method:

$account = $em >get Repository(' Entities\Account')
->f i ndOneByUser name(' wj gi | nore') ;

$gane = $em >get Reposi tory(' Entities\Gane')->find(1);
$account - >get Ganes() - >r enoveEl enent ($gane) ;

$em >per si st ($account) ;
$em >f | ush();

Configuring Associations

In order to take advantage of these fantastic features you'll need to define the nature of the
associations within your entities. Doctrine supports a variety of associations, including one-to-one,
one-to-many, many-to-one, and many-to-many. In this section I'll show you how to configure a
many-to-many association, which is also referred to as a has-and-bel ongs-to-many relationship. For
instance, the book's theme project is based in large part around providing registered users with the
ability to build video game libraries. Therefore, an account can have many games, and a game can
be owned by multiple users. This relationship would be represented like so:

CREATE TABLE accounts (
id I NTEGER UNSI GNED NOT NULL AUTO_ | NCREMENT PRI MARY KEY,
user name VARCHAR(255) NOT NULL,
emai | VARCHAR(255) NOT NULL

)

CREATE TABLE ganes (
id I NTEGER UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,

Easy PHP Websites with the Zend Framework 127

name VARCHAR(255) NOT NULL,
publ i sher VARCHAR(255) NOT NULL

);

CREATE TABLE accounts_ganes (
account _id | NTEGER UNS| GNED NOT NULL,
gane_i d | NTEGER UNSI GNED NOT NULL,

);

ALTER TABLE accounts_games ADD FORElI GN KEY (account _i d)
REFERENCES account s(i d);

ALTER TABLE accounts_ganmes ADD FORElI GN KEY (gane_i d)
REFERENCES ganes(i d);

Because the ideais to associate a collection of games with an account, you'll need to use Doctrine's
Doct ri ne/ Conmon/ Col | ect i ons/ Col | ecti on interface. Incidentally this section is referring to the
same code found in the z2d2 project Account entity so | suggest opening that file and follow along.
WEe'll want to use the ArrayCol | ect i on class, so reference it at the top of your entity like this:

use Doctri ne\ Cormon\ Col | ecti ons\ ArrayCol | ecti on;

Next you'll need to define the class attribute which will contain the collection, and with it the
nature of the relationship it has with another entity. This is easily the most difficult step, however
the Doctrine manual provides quite a few examples and if you rigorously model your code after
that accompanying these examples then you'll be fine. For instance, we want the Account entity to
manage a collection of games, and so the Many ToMany annotation will ook like this:

/**
* @mnyToMany(target Entity="Ganme", inversedBy="accounts")
* @oi nTabl e(nane="account s_ganes",
* j oi nCol utms={ @oi nCol umMm(nanme="account _i d",
r ef erencedCol utmNane="i d") },
i nver seJoi nCol ums={ @oi nCol um(nanme="gane_i d",
ref erencedCol utmNane="i d") }

)
!

* %k 3k ok ok

private $ganes;

With the relationship defined, you'll want to initialize the $ganes attribute, done within a class
constructor:

public function __construct()

$t hi s->ganmes = new ArrayCol | ection();

Easy PHP Websites with the Zend Framework 128

|}

Finally, you'll want to define convenience methods for adding and retrieving games:

public function addGane(Gane $gane)

{
$gane- >addAccount ($t hi s) ;
$t hi s->ganmes[] = $gane;

}

public function get Ganes()

{
}

return $thi s->ganes;

Asyou can see in the addGane() method, we are updating both sides of the relationship. The Gane
object'saddAccount () method does not come out of thin air however; you'll define that in the Garre
entity.

Defining the Game Entity Relationship

The Gane entity's relationship with the Account entity must also be defined. Because we want to be
able to treat a game's associated accounts as a collection, you'll again reference ArrayCol | ecti on
class at the top of your entity just as you did with the Account entity:

use Doctri ne\ Cormon\ Col | ecti ons\ ArrayCol | ecti on;

Theinverse side of this relationship is much easier to define:

/**
* @mnyToMany(target Entity="Account", mappedBy="ganes")
*/

private $accounts;

Next, initialize the $account s attribute in your constructor:

public function _ _construct()

{
}

$t hi s->accounts = new ArrayCol | ection();

Finally, you'll define the addAccount () and get Account s() methods

public function addAccount (Account $account)

{

Easy PHP Websites with the Zend Framework 129

$t hi s->accounts[] = $account;

}
public function getAccounts()
{
return $this->accounts;
}

With the association definition in place, you can begin creating and retrieving associations using
the very same code as that presented at the beginning of this section! Don't forget to regenerate the
schema however, because in doing so Doctrine will automatically create the account s_ganes table
used to store the relations.

Defining Repositories

No doubt that Doctrine's default magic finders provide agreat way to begin querying your database,
however you'll quickly find that many of your queriesrequirealevel of sophistication which exceed
thethemagicfinders capabilities. DQL isthelogical aternative, however embedding DQL into your
controllersisn't desirable, nor is polluting your domain model with SQL-specific behaviors. Instead,
you can create custom entity repositories where you can define your own custom magic finders!

Totell Doctrine you'd like to use a custom entity repository, modify the entity's @nt i t y annotation
to identify the repository location and name, as demonstrated here:

| **

* @ntity (repositoryCd ass="Repositories\Account")
* @abl e(name="account s")

Next you can use the Doctrine CL | to generate the repositories:

$./scripts/doctrine ormgenerate-repositories \
[var/ www/ dev. wj games. conmt appl i cati on/ nodel s

Processi ng repository "Repositories\Account”

Processing repository "Repositories\Gane"

Repository cl asses generated to "/var/ww/ dev. w ganmes. com appl i cati on/ nodel s"

With the repository created, you can set about creating your own finders. For instance, suppose you
wanted to create afinder which retrieved alist of accounts created in the last 24 hours. The method
might look like this:

public function findNewestAccounts() {

Easy PHP Websites with the Zend Framework 130

$now = new \ Dat eTi me(" now");
$oneDayAgo = $now >sub(new \ Datel nterval (' P1D))
->format('Y-md h:i:s');

$gb = $t hi s->_em >creat eQuer yBui |l der () ;

$gb- >sel ect (' a. user nane')
->from(' Entities\Account', 'a')
->where('a.created >= :date')
->set Paranet er (' date', $oneDayAgo);

return $qb->get Query()->get Resul t ();
}

Once added to the Account repository, you'll be ableto call this finder from within your controllers
just like any other:

$em = $t hi s->_hel per->Enti t yManager ();

$accounts = $em >get Reposi tory(' Entiti es\ Account')
->f i ndNewest Account s() ;

Testing Your Work

Automated testing of your persistent classes is a great way to ensure that your website is able to
access them and that you are able to properly query and manipulate the underlying database via
the Doctrine API. In this section I'll demonstrate a few basic tests. Remember that you'll need
to configure your testing environment before you can begin taking advantage of these tests. The
configuration processis discussed in great detail in Chapter 11.

Testing Class Instantiation

Use the following test to ensure that your persistent classes can be properly instantiated:

public function testCanlnstantiateAccount ()

{

$t hi s->assert|nstanceO (' \Entities\Account', new \Entities\Account);

}

Testing Record Addition and Retrieval

The following test will ensure that a new user can be added to the database via the Account entity
and later retrieved using the f i ndoneByUser nane() magic finder.

Easy PHP Websites with the Zend Framework 131

public function testCanSaveAndRetrieveUser ()

{

}

$account = new \ Entities\Account;

$account - >set User name(' wj gi | nore-test');
$account - >set Emai | (' exanpl e@y gi | nore. con) ;
$account - >set Passwor d(' j ason');

$account - >set Zi p(' 43201');

$t hi s- >em >per si st ($account) ;

$t hi s->em >f | ush();

$account = $this->em >get Repository(' Entities\Account')
->fi ndOneByUsername('w gi | nore-test');

$t hi s- >assert Equal s(' w gi | rore-test', $account->get Usernane());

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

Talk about the advantages Doctrine provides to devel opers.

Talk about the different formats Doctrine supports for creating persistent objects.
What are DocBlock annotations?

What is DQL and why isit useful ?

Wheat is QueryBuilder and why isit useful ?

Why isit agood ideato create arepository should your query requirements exceed the capabilities
provided by Doctrine's magic finders?

Chapter 8. Managing User
Accounts

GameNomad is perhaps most succinctly defined as a social network for video game enthusiasts.
After all, lacking the ability to keep tabs on friends' libraries and learn more about local video games
available for trade or sale in your area, there would be little reason. These sorts of features will
depend upon the ability of a user to create and maintain an account profile. This account profile
will describe that user as relevant to GameNomad's operation, including information such as his
residential zip code, and will also serve as the foundation from which other key relationships to
games and friends will be made.

In order to give the user the ability to create and maintain an account profile, you'll need to create
a host of associated features, such as account registration, login, logout, and password recovery.
Of course, user management isn't only central to social network-oriented websites; whether you're
building a new e-commerce website or a corporate intranet, the success of your project will hinge
upon the provision of these features. Thankfully, the Zend Framework offers a robust component
called Zend Auth which contributes greatly to your ability to create many of these features. In this
chapter I'll introduce you to this component, showing you how to create features capable of carrying
out all of these tasks.

Creating the Accounts Database Table

When creating anew model | awaysliketo begin by designing and creating the underlying database
table, because doing so formally defines much of the data which will be visible and managed from
within the website. With the schema defined, it's a natural next step to create the associated model
and the associated attributes and behaviors which will represent the table. So let's begin by creating
theaccount s table.

CREATE TABLE accounts (
id | NTEGER UNSI GNED NOT NULL AUTO | NCREMENT PRI MARY KEY,
user nane VARCHAR(255) UNI QUE NOT NULL,
enmai | VARCHAR(255) UNI QUE NOT NULL,
password CHAR(32) NOT NULL,
zi p VARCHAR(10) NOT NULL,
confirmed BOOLEAN NOT NULL DEFAULT FALSE,
recovery CHAR(32) NULL DEFAULT '',
creat ed DATETI ME NOT NULL,
updat ed DATETI ME NOT NULL

Easy PHP Websites with the Zend Framework 133

Let'sreview the purpose of each column:

The i d column is the table's primary key. Although we'll generaly retrieve records using the
account username or e-mail address, the i d column nonethel ess serves an important identifying
role because this value will serve as aforeign key within other tables.

The user nane column stores the account's unique username which identifies the account owner
to hisfriends and other users.

The emai | column stores the account's email address. The e-mail address is used to confirm a
newly created account, for logging the user into the website, as the vehicle for recovering lost
passwords, and for general GameNomad-related communication.

The password column stores the account's password. This is defined as a 32 character CHAR
because for security purposes the account password will be encrypted using the MD5 hashing
algorithm. Any string encrypted using MD5 isaways stored using 32 characters, and so we define
the password column to specificaly fit this parameter.

The zi p column stores the user's zip code. Having a general idea of the user's location is crucial
to the GameNomad experience because it gives users the opportunity to learn more about games
which are available for borrowing, trading, or salein their area.

The confirnmed column is used to determine whether the account's e-mail address has been
confirmed. Confirming the existence and accessibility of anewly created account's e-mail address
is important because the e-mail address will serve as the vehicle for recovering lost passwords
and for occasional GameNomad-related correspondence.

The recovery column stores a random string which will form part of the one-time URLs used
to confirm accounts and recover passwords. You'll learn more about the role of these one-time
URLs later in the chapter.

The creat ed column stores the date and time marking the account's creation. This could serve
as a useful data point for determining the trending frequency of account creation following a
marketing campaign.

The updat ed column stores the date and time marking the last time the user updated his account
profile.

Once you've created the account s table, take a moment to review the Account entity found in
the GameNomad project source code. This entity is quite straightforward, insomuch that it doesn't
contain any features which are so exatic that they warrant special mention here.

Easy PHP Websites with the Zend Framework 134

Creating New User Accounts

Asyou'll soon learn, the code used to manage the account login and logout processis so simple that
it would seem logical to ease into this chapter by introducing these topics, however it's not practical
to test those features without first having afew accounts at our disposal. So let's begin with the task
of alowing visitors to create new GameNomad accounts. Begin by creating the Account controller,
which will house all of the actions associated with account management:

%zf create controller Account

Next create ther egi st er action which will house the account registration logic:

%zf create action register Account

With the Account controller and r egi st er action created, you'll typically follow the same sequence
of steps whenever an HTML form is being incorporated into a Zend Framework application. First
you'll create the registration form model (For nRegi st er . php in the code download), and then create
the view used to render the model (_f or m regi st er. pht i in the download), and finally write the
logic used to process the r egi st er action. Because the process of creating and configuring form
models and their corresponding views was covered in great detail in Chapter 4, I'm not going to
rehash their implementation here and will instead refer you to the code download. Instead, let's
focus on the third piece of this triumvirate: the regi st er action. The regi st er action as used in
GameNomad is presented next, followed by some commentary.

01 public function registerAction()

02 {

03

04 // Instantiate the registration form nodel

05 $f orm = new Appl i cati on_Mdel _FornRegi ster();
06

07 /'l Has the form been subnitted?

08 if ($this->getRequest()->isPost()) {

09

10 /Il If the formdata is valid, process it

11 if ($form >i sValid($this-> request->getPost())) {
12

13 /'l Does account associated with usernane exist?
14 $account = $t hi s- >em >get Repository(' Entities\Account')
15 ->f i ndOneByUser nameOr Emai | (

16 $f or m >get Val ue(' usernane'),
17 $f or m >get Val ue(' enmi | ')

18)

19

20 if (! $account)

Easy PHP Websites with the Zend Framework 135

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

$account = new \Entities\Account;

/'l Assign the account attri butes

$account - >set User nane($f or m >get Val ue(' usernane'));
$account - >set Emai | ($f or m >get Val ue(' emai |l '));
$account - >set Passwor d($f or m >get Val ue(' password'));
$account - >set Zi p($f orm >get Val ue(' zip'));

$account - >set Confi r med(0) ;

/1 Set the confirmation key
$account - >set Recover y($t hi s->_hel per - >generat el D(32)) ;

try {

/] Save the account to the database
$t hi s- >em >per si st ($account) ;
$t hi s->em >f | ush();

/]l Create a new mail object
$mail = new Zend_Mail ();

/'l Set the e-mail from address, to address, and subject
$mai | - >set Fr on(
Zend_Regi stry::get('config')->email->support
)
$mi | - >addTo(
$account - >get Emai | (), "{$account - >get User nane()}"
)

$mai | - >set Subj ect (' GameNonad. com Confirm Your Account');

/! Retrieve the e-mail nessage text
include "_email _confirmemail _address. phtm";

/] Set the e-mmil message text
$mai | - >set Body Text ($emai |) ;

/1 Send the e-mail
$mai | - >send() ;

/'l Set the flash message
$t hi s->_hel per - >f | ashMessenger - >addMessage(
Zend_Regi stry: :get (' config')->messages- >regi st er->successful

);

/'l Redirect the user to the home page

Easy PHP Websites with the Zend Framework 136

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

$t hi s->_hel per->redirector('login', 'account');
} catch(Exception $e) {
$t hi s->view>errors = array(
array("There was a probl em creati ng your account.")
)
}
} else {
$t hi s->view>errors = array(
array("The usernanme or e-mmil address already exists.")
)
}
} else {
$t hi s->view>errors = $f orm >get Errors();
}
}
$t hi s->view>form = $form
}

Let'sreview this code:

Line 05 instantiates the For nRegi st er model, which defines the form fields and validation
procedures.

Line 08 determinesif the form has been submitted, and if so, Line 11 determines if the submitted
form information passesthe validation constraints defined in the For nRegi st er model. If theform
data does not validate, The errors are passed to the $f or mview scope variable (Line 86) and the
form displayed anew (Line 91).

If the provided form datais validated, Line 23 instantiates a new Account entity object, and the
object is populated with the form data (Lines 26-34). Note in particular how the password is
set just like the other fields despite the previoudly discussed requirement that the password be
encrypted within the database. This is accomplished by overriding the password mutator within
the Account entity.

Line 34 creates the user's unique recovery key by generating a random 32 character string. The
$this-> hel per->generatel D(32) cal is not native to the Zend Framework but rather is a

Easy PHP Websites with the Zend Framework 137

custom action hel per which |'ve created as aconvenience, since the need to generate unique strings
arises several times throughout the GameNomad website. Y ou can find this action helper in the
l'ibrary/ W@ Control | er/ Acti on/ Hel per/ directory.

 Line 39-40 saves the object to the database.

* If the save is successful, lines 43-61 send an account confirmation e-mail to the user using the
Zend Framework's Zend_Mail component. I'll talk more about this processin the section " Sending
E-mail Through the Zend Framework".

 After sending the e-mail, a flash message is prepared (lines 64-66)and the user is redirected to
the login page (line 68). Although you could certainly embed the notification message directly
within the flash messenger helper'saddMessage() method, | prefer to manage all of the messages
together within the configuration file appl i cati on. i ni).

Sending E-mail Through the Zend Framework

Because the e-mail messages can be quite lengthy particularly if HTML formatting is used, |
prefer to manage these messages within their own file. In ther egi st er action presented above, the
confirmation e-mail isstored within afilenamed _emai | _confirm emai | _addr ess. pht ni . Because
you'll typically want to dynamically update this e-mail with information such as the user's name, not
to mention need to passthis messageto the set Body Text () method set BodyHt mi () if you're sending
an HTML-formatted message), | place the message within a variable named semsi |, using PHP's
HEREDOC statement. For instancehereiswhat _emai | _confirm enmai | _address. pht ni lookslike:

<?php

$emai | = <<< emai |
Dear {$account->get Usernane()},

Your GanmeNomad account has been created! To conplete registration,
click on the below link to confirmyour e-mail address.

htt p: / / ww. ganenonmad. coni account / confi r ml key/ { $account - >get Recovery()}
Once confirmed, you'll be able to access exclusive GaneNonmad feat ures!

Thank you!
The GaneNomad Team

Questions? Contact us at support @anenomad. com
http://ww. gamenonmad. com

emai | ;

Easy PHP Websites with the Zend Framework 138

?>

For organizational purposes, | storethese e-mail messagefileswithinappl i cati on/ vi ews/ scri pts.
However, chances are this particular directory doesn't reside on PHP'si ncl ude_pat h, so you'll need
to add it if you'd like to follow this convention. Rather than muddle up the configuration directive
withinphp. i ni | prefertoaddittotheset _i ncl ude_pat h() function call withinthe front controller
publ i c/i ndex. php):

set _i ncl ude_pat h(i npl ode(PATH_SEPARATOR, array(
real pat h(APPLI CATION_PATH . '/../library'),
real pat h(APPLI CATI ON_PATH . '/../application/views/scripts'),
get _i ncl ude_pat h(),

)))

Configuring Zend_Mail to Use SMTP

Zend Mail will by default rely upon the server's Sendmail daemon to send e-mail, whichisinstalled
and configured on most Unix-based systems by default. However, if you're running Windows or
would otherwise like to use SMTP to send e-mail you'll need to configure Zend_Mail so it can
authenticate and connect to the SMTP server.

Because you might send e-mail from any number of actions spread throughout the site, you'll want
this configuration to be global. | do so by adding amethod to the Boot st r ap. php file which executes
with each request. In a high-traffic environment you'll probably want to devise a more efficient
strategy but for most devel opers this approach will work just fine. Within this method (which | call
_initEmail)you'll passthe SMTP server's address, port, type of protocol used if the connection is
secure, and information about the account used to send the e-mail, including the account username
and password. | storeall of thisinformation withinthe appl i cati on. i ni filefor easy maintenance.
For instance, the following snippet demonstrates how you would define these parameters to send e-
mail through a Gmail account:

enui | . server "snt p. gnai | . cont

enmi | . port = 587

enui | . usernanme = "exanpl e@nui |l . cont
enui | . password = "secret"

enmai | . protocol = "tls"

The _initemail() method will retrieve these parameters, pass them to the
Zend_Mai | _Transport_Snt p constructor, along with the SMTP server address, and then pass the
newly created zend_Mai | _Transport _Snt p objectto Zend Mail'sset Def aul t Transport () method.
Theentire_i ni t Emai | () method is presented here:

Easy PHP Websites with the Zend Framework

139

protected function _initEmail ()

{

$emai | Config = array(
"auth'=> "login',

'usernane' => Zend_Registry::get('config')->email->usernane,
' password' => Zend_Regi stry::get('config')->email->password,
'ssl’ => Zend_Regi stry::get('config')->email->protocol,
'port'’ => Zend_Regi stry::get('config')->email->port

)

$mai | Transport = new Zend_Mai | _Transport _Snt p(
Zend_Regi stry::get('config')->emil->server,

Zend_Mai | : : set Def aul t Transport ($mai | Transport);

$emai | Confi g);

With _i ni t Emai | () in place, you can go about sending e-mail anywhere within your application!

Confirming the Account

After the account has been successfully created, a confirmation e-mail will be generated and sent to
the account'se-mail address. Thise-mail containsalink known asa"one-time URL" which uniquely
identifiesthe account by passing the value stored in the account record'sr ecover y column. The URL
is generated by inserting the account's randomly generated recovery key into the e-mail body stored
within _emai | _confirm emai | _address. pht m . The particular line within this file which creates

the URL looks like this:

ht t p: / / ww. ganenomad. conf account / confi r m key/ { $account - >r ecover y}

When the user clicks this URL he will be transported to GameNomad's account confirmation page,
hosted within the Account controller's conf i r maction. The action code is presented next, followed

by a breakdown of relevant lines.

01 public function confirmAction()

02 {

03

04 $key = $this->_request->getParan('key');
05

06 /'l Key shoul d not be bl ank

07 if ($key !="")

08 {

09

Easy PHP Websites with the Zend Framework 140

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 }

$em = $t hi s->get | nvokeAr g(' boot strap')

->get Resource(' entityManager');

$account = $em >get Repository(' Entities\Account')

->f i ndOneByRecover y($t hi s->_request - >get Par an(' key'));

/1l Was the account found?
if ($account) {

/'l Account found, confirm and reset recovery attribute
$account - >set Confi rmed(1);
$account - >set Recovery("");

/] Save the account to the database
$em >per si st ($account) ;
$em >f | ush();

/Il Set the flash message and redirect the user to the | ogin page
$t hi s->_hel per - >f | ashMessenger - >addMessage(
Zend_Regi stry: :get (' config')->nmessages
->regi ster->confirm >successf ul
)

$t hi s->_hel per->redirector('login', 'account');
el se {

/] Set flash nessage and redirect user to the |ogin page
$t hi s->_hel per - >f | ashMessenger - >addMessage(
Zend_Regi stry: :get (' config')->nmessages
->regi ster->confirm>fail ed
)

$t hi s->_hel per->redirector('login', 'account');

Let'sreview several relevant lines of the conf i r maction:

» Line 13-14 retrieves the account record associated with the recovery key passed viathe URL.

« If thekeyisfound (line 17), the account is confirmed, the recovery key isdeleted, and the changes
are saved to the database (lines 20-25)

Easy PHP Websites with the Zend Framework 141

Once the updated account information has been saved back to the database, a messageis assigned
to the flash messenger and the user is redirected to the Account controller's| ogi n action (lines
28-32).

If the recovery key is not found in the database, presumably because the user had previously
confirmed his account and is for some reason trying to confirm it anew, an error message is
assigned to the flash messenger and the user is redirected to the login page (lines 37-41).

Creating the User Login Feature

w

ith the user's account created and confirmed, he can login to the site in order to begin taking

advantage of GameNomad's special features. Like account registration, the account login feature

is

typically implemented using a form model (appl i cati on/ model s/ For mLogi n. php), associated

view script (appl i cati on/ vi ews/ scri pts/_form | ogin. ht M), and acontroller action whichyou'll
find in the Account controller'si ogi n action. Just as was the case with the earlier section covering
registration, I'll forego discussion of theform model and instead focusonthel ogi n action. Asalways
you can review the form model and its associated parts by perusing the relevant files within the code
download. Thel ogi n action is presented next, followed by areview of relevant lines.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

public function |oginAction()
{
$f orm = new Appl i cati on_Mdel _FornLogi n();
/'l Has the |ogin formbeen posted?
if ($this->getRequest()->isPost()) {
/1 1f the submitted data is valid, attenpt to authenticate the user
if ($form >i sValid($this-> request->getPost())) {
/'l Did the user successfully |ogin?
if ($this->_authenticate($this-> request->getPost())) {
$account = $t hi s- >em >get Repository(' Entities\Account')
->fi ndOneByEmai | ($f or m >get Val ue(' emai |l '));
/'l Save the account to the database
$t hi s- >em >per si st ($account) ;
$t hi s->em >f | ush();
/'l Generate the flash nessage and redirect the user
$t hi s->_hel per - >f | ashMessenger - >addMessage(
Zend_Regi stry: :get (' config')->messages- >l ogi n- >successf ul

);

Easy PHP Websites with the Zend Framework 142

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

return $this->_hel per->redirector('index', 'index');

} else {
$this->view>errors["fornl'] = array(
Zend_Regi stry: :get (' config')->messages- >l ogi n->fail ed
)
}

} else {
$thi s->view>errors = $f orm >get Errors();

}
}

$t hi s->view>form = $form

}

Let'sreview the relevant lines of this snippet:

Line 04 instantiates anew instance of the For nLogi n model, whichis passed to the view online 34.

If the form has been submitted back to the action (line 07), and the form data has properly
validated (line 10), the action will next attempt to authenticate the user (line 13) by comparing the
provided e-mail address and password with what's on record in the database. | like to maintain
the authentication-specific code within its own protected method _aut hent i cat e()), which we'll
review in just amoment.

If authentication is successful, lines 15-16 will retrieve the account record using the provided
e-mail address. Finaly, a notification message is added to the flash messenger and the user is
redirected to GameNomad's home page.

If authentication fails, an error message is added to the global errors array (lines 30-32) and the
login form is displayed anew.

As | mentioned, _aut henti cate() is a protected method which encapsulates the authentication-
specific code and establishes a new user session if authentication is successful. You could just

as
in

easily embed this logic within your 1 ogi n action however | prefer my approach as it results
somewhat more succinct code. The _aut hent i cat e() method is presented next, followed by a

review of relevant lines:

01
02

protected function _authenticate($data)

{

Easy PHP Websites with the Zend Framework 143

03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

$db = Zend_Db_Tabl e: : get Def aul t Adapt er () ;
$aut hAdapt er = new Zend_Aut h_Adapt er _DbTabl e($db) ;

$aut hAdapt er - >set Tabl eNane(' accounts');

$aut hAdapt er - >set | denti t yCol um(' emai | ') ;

$aut hAdapt er - >set Credent i al Col um(' password') ;

$aut hAdapt er - >set Credent i al Treat nent (' MD5(?) and confirmed = 1');

$aut hAdapt er - >set I dentity($data[' email']);
$aut hAdapt er - >set Credenti al ($dat a[' pswd']);

$auth = Zend_Aut h: : get | nstance();
$result = $aut h- >aut hent i cat e($aut hAdapt er) ;
if ($result->isValid())
{
if ($data[' public'] == "1") {
Zend_Sessi on: : renenber Me(1209600) ;
} else {
Zend_Sessi on: : f or get Me() ;
}
return TRUE;
} else {
return FALSE;
}
}

Let's review the code:

The Zend_Auth component authenticates an account by defining the account data source and
withinthat source, the associated account credential s. Several sourcesare supported, including any
database supported by the Zend Framework, LDAP, Open ID. Because GameNomad's account
data is stored within the MySQL database's account s table, the _aut henti cat e() method uses
Zend Auth's zend_Aut h_Adapt er _DbTabl e() method (line 05) to pass in the default database
adapter handle (see Chapter 6 for more about this topic), and then uses the set Tabl eNane()
method (line 07) to define the account s table as the account data repository. Unfortunately at the
time of this writing there is not a Doctrine-specific Zend Auth adapter, and so you are forced to
define two sets of database connection credentials within the appl i cation.ini filein order to

Easy PHP Websites with the Zend Framework 144

take advantage of Zend_Auth in this manner, however it is a small price to pay in return for the
conveniences otherwise offered by this component.

» Lines08- 09 associatetheaccount s table'semai | and passwor d columnsasthose used to establish
an account's credentials. These are the two items of information a user is expected to pass along
when prompted to login.

* Line 10 usesthe set Credenti al Tr eat ment () method to determine how the password should be
passed into the query. Because the password isencrypted within theaccount s tableusing theMD5
algorithm, we need to make sure that the provided password is similarly encrypted in order to
determine whether amatch exists. Additionally, because the user must confirm his account before
being allowed to login, we also check whether the table's conf i r med column has been set to 1.

» Lines 12 and 13 define the account identifier (the e-mail address) and credential (the password)
used in the authentication attempt. These values are passed into the _aut henti cat e() method,
and originate as $_POST variables passed in viathe login form.

» Line 15 instantiates a new instance of Zend_Auth, and passesin the authentication configuration
datainto the object using the aut hent i cat e() method.

* Line 18 determines whether the provided authentication identifier and credential exists as a pair
within the database. If so, the user has successfully authenticated and we next determine whether
the user has specified whether hewould liketo remain logged-in on hiscomputer for two weeks, as
determined by whether the check box on the login form was selected. If so, the cookie's expiration
date will be set for two weeks from the present (the session cookie is used by Zend_Auth for
all subseguent requests to determine whether the user islogged into the website). Otherwise, the
cooki€e's expiration date will be set in such away that the cookie will expire once the user closes
the browser.

» Finally, avalue of either TRUE or FAL SE will bereturnedto thel ogi n action, indicating whether
the authentication attempt was successful or has failed, respectively.

Determining Whether the User Session is Valid

After determining that the user has successfully authenticated, Zend_Auth will place a cookie on
the user's computer which can subsequently be used to determine whether the user session is till
valid. You can use Zend_Auth'shasl! denti ty() method to verify session validity. If valid, you can
usetheget I dentity() method to retrieve the account'sidentity (which in the case of GameNomad
isthe e-mail address).

$auth = Zend_Aut h: : get | nstance();

Easy PHP Websites with the Zend Framework 145

if ($auth->hasldentity()) {
$identity = $auth->getldentity();

if (isset($identity)) {
printf ("Wl cone back, %", $identity);
}

However, you'relikely going to want to determine whether avalid account session existsat any given
point within the website, meaning you'll need to execute the above code with every page request.
My suggested solution is to insert this logic into a custom action helper and then call this action
helper from within the application bootstrap (meaning the action helper will be called every time
the application executes). Because this action helper can be used to initialize other useful global
behaviors and other attributes, I've called it I ni ti al i zer. php and for organizational purposes have
placed it within /1i brary/ W& Control | er/ Acti on/ Hel per/ . The authentication-relevant part of
thelnitializer action helper is presented next, followed by adiscussion of the relevant lines.

01 $auth = Zend_Aut h: : get | nstance();

02

03 if ($auth->hasldentity()) {

04

05 $identity = $auth->getldentity();

06

07 if (isset($identity)) {

08

09 $em = $t hi s->get Acti onController()

10 ->get | nvokeAr g(' boot strap')

11 ->get Resource(' entityManager');

12

13 /'l Retrieve information about the | ogged-in user
14 $account = $em >get Reposi tory(' Entiti es\ Account')
15 ->fi ndOneByEnmai | ($i dentity);

16

17 Zend_Layout : : get Mvcl nst ance() - >get Vi ew() - >account = $account;
18

19 }

20

21}

Let's review the code:

» Line 02 retrieves a static instance of the Zend_Auth object

Easy PHP Websites with the Zend Framework 146

 Line 03 determines whether the user is currently logged in. If so, line 05 retrieves the identity of
the currently logged-in user as specified by his username.

e Line 09 retrieves the entity manager, which is needed on lines 14-15 in order to retrieve
information about the logged-in user.

e Line 17 passes the retrieved account object into the application's view scope using a little-
known feature of the Zend Framework which allows you to inject values into the view via the
Zend Layout component's get Vi ew() method.

Withthel ni ti al i zer custom action helper defined, you'll next need to add amethod to the bootstrap
/ appl i cati on/ Boot st rap. php) which will result in I nitializer being executed each time the
application initializes. The following example method defines the custom action helper path using
theZend_Controller_Action_HelperBroker'saddPat h() method, and then executes the action using
the Zend_Controller_Action_HelperBroker's addHel per () method:

protected function _initd obal Vars()

{

Zend_Control | er _Acti on_Hel per Br oker : : addPat h(
APPL| CATI ON_PATH. ' /. ./l ibrary/ WG Control | er/ Acti on/ Hel per"'
)

$initializer = Zend_Control | er _Acti on_Hel per Br oker : : addHel per (
new WIG Control |l er _Action_Hel per _Initializer()
)

Because the account object is injected into the view scope, you can determine whether a valid
session exists within both controllers and views by referencing the $t hi s- >vi ew >account and
$t hi s- >account variables, respectively. For instance, thefollowing code might be used to determine
whether a valid session exists. If so, a custom welcome message can be provided, otherwise
registration and login links can be presented.

<?php if (! $this->account) { ?>
<p>
Login to your account |
Regi ster
</ p>
<?php } else { ?>
<p>
Wl cone back, <?= $t hi s- >account - >user nane; ?>
&anp; m ddot ;

Easy PHP Websites with the Zend Framework 147

Logout </ a>
</ p>
<?php } 2>

A GameNomad screenshot using similar functionality to determine session validity is presented in
Figure 8.1.

Welcome back, wjgilmore - Logout

Figure 8.1. Greeting an authenticated user

Creating the User Logout Feature

Particularly if the user is interacting with your website via a publicly accessible computer he will
want to be confident that his session is terminated before walking away. Fortunately, logging the
user out iseasily accomplished using Zend_Auth'scl ear I dent i t y() method, asdemonstrated here:

public function | ogoutAction()

Zend_Aut h: : get | nst ance() - >cl earldentity();

$t hi s->_hel per - >f | ashMessenger - >addMessage(' You are | ogged out of your account');
$t hi s->_hel per->redirector('index', 'index');

}

Creating an Automated Password Recovery Feature

With everything else you need to accomplish on any given day, the last thing you'll want to deal
with is responding to requests to reset an account password. Fortunately, creating an automated
password recovery featureis quite easy. Like the account confirmation feature introduced earlier in
this chapter, the password recovery feature will depend upon the use of a one-time URL sent viae-

Easy PHP Websites with the Zend Framework 148

mail which the user will click in order to confirm his identity. Once the user clicks this URL, the
user's account will be updated with a new random password, and that random password will be e-
mailed to the user. Once the user logsinto the website, he can change the password as desired.

The user will initiate the password recovery process by presumably clicking on a link located
somewhere within the login screen. In the case of GameNomad he'll be transported to / account /

I ost, and prompted to provide hise-mail address (see Figure 8.2). If the e-mail addressis associated
with aregistered user, then arecovery key is generated and and a one-time URL is e-mailed to the
user.

Recover a Lost Password

Provide your e-maill address to initlate the password recovery process,

Your E-malil Address:

| |

Figure 8.2. Recovering alost password

The | ost action used to generate and send the recovery key to the provided e-mail address is
presented next. Frankly there's nothing in this action which you haven't already seen several times,
so I'll forego the usual summary.

01 public function |ostAction()

02 {

03

04 $form = new Application_Mdel _Forniost();

05

06 if ($this->getRequest()->isPost()) {

07

08 /1 If formis valid, nmake sure e-nuil address is associ ated
09 /1 with an account

10 if ($form >i sValid($this-> request->getPost())) {

11

12 $account = $t hi s- >em >get Repository(' Entities\Account')
13 ->fi ndOneByEmai | ($f or m >get Val ue(' emai |l '));

14

Easy PHP Websites with the Zend Framework 149

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 }

/1 1f account is found, generate recovery key and mail it to
/'l the user
i f ($account)

{

/| Generate a random password
$account - >set Recover y($t hi s->_hel per - >generat el D(32)) ;

$t hi s- >em >per si st ($account) ;
$t hi s->em >f | ush();

/]l Create a new mail object
$mai|l = new Zend_Mail ();

/'l Set the e-mail from address, to address, and subject

$mai | - >set From(Zend_Regi stry: : get (' config')->ensil ->support);
$mai | - >addTo($f or m >get Val ue(' emai | '));

$mai | - >set Subj ect (" GameNonad: Generate a new password");

/! Retrieve the e-mail nessage text
include "_email _| ost_password. phtm ";

/] Set the e-mmil message text
$mai | - >set BodyText ($emai |) ;

/1l Send the e-nmail
$mai | - >send() ;

$t hi s->_hel per->f| ashMessenger
- >addMessage(' Check your e-nmil for further instructions');

$t hi s->_hel per->redirector('login', 'account');
}
} else {
$thi s->view>errors = $f orm >get Errors();

}
}

$t hi s->view>form = $form

The e-mail message sent to the user is found within the file _enai | _I ost _password. pht i (and
included intothel ost action on line 34). When sent to the user the e-mail looks similar to that found
in Figure 8.3.

Easy PHP Websites with the Zend Framework 150

GameNomad: Generate a new password inbox |
s com to me
Dear wjgilmore,

Somebody has requested that the password associated with this account be
reset. If you initiated this request, click the below link to complete the proce

hitp:/fwanw.gamenomad. comfaccount/recover/key/quahmeds 34| SwayySquiz

Thank you!
The GameMNomad Team

Questions? Contact us at supporti@gamenomad.com
hitp:/wasw_ gamenocmad. com/

+ Reply =¥ Forward

Figure 8.3. The password recovery e-mail

Once the user clicks on the one-time URL he is transported back to the GameNomad website,
specifically to the Account controller's recover action. This action will retrieve the account

Easy PHP Websites with the Zend Framework 151

associated with the recovery key passed along as part of the one-time URL. If an account is found,
arandom eight-character password will be generated and sent to the e-mail address associated with
theaccount. Ther ecover action codeis presented next. Aswasthe casewith thel ost action, there's
nothing new worth discussing in ther ecover action, so I'll just provide the code for your perusal:

01 public function recoverAction()

02 {

03

04 $key = $this->_request->getParan('key');

05

06 if ($key !="")

07 {

08

09 $account = $this->em >get Repository(' Entities\Account")
10 ->f i ndOneByRecover y($key) ;

11

12 /1 If account is found, generate recovery key and nail it to
13 /1l the user

14 i f ($account)

15 {

16

17 /| Cenerate a random password

18 $password = $t hi s->_hel per->generatel D(8);

19 $account - >set Passwor d($passwor d) ;

20

21 /| Erase the recovery key

22 $account - >set Recovery("");

23

24 /] Save the account

25 $t hi s- >em >per si st ($account) ;

26 $t hi s->em >f | ush();

27

28 /] Create a new nmil object

29 $mai | = new Zend_Mai l ();

30

31 I/l Set the e-mmil from address, to address, and subject
32 $mai | - >set From(Zend_Regi stry: : get (' config')->email->support);
33 $mai | - >addTo($account - >get Emai | ()) ;

34 $mai | - >set Subj ect (" GanmeNormad: Your password has been reset");
35

36 /] Retrieve the e-nmmil nessage text

37 include "_email _recover_password. phtm ";

38

39 I/l Set the e-nmmil nessage text

40 $mai | - >set BodyText ($emai |) ;

41

42 /1 Send the e-nuil

Easy PHP Websites with the Zend Framework 152

43 $mai | - >send() ;

44

45 $t hi s->_hel per - >f | ashMessenger - >addMessage(

46 Zend_Regi stry: :get (' config')->nmessages

47 - >account - >passwor d- >r eset

48)

49 $t hi s->_hel per->redirector('login', 'account');
50

51 }

52

53 }

54

55 /'l Either a blank key or non-existent key was provided
56 $t hi s->_hel per - >f | ashMessenger - >addMessage(

57 Zend_Regi stry::get('config')

58 - >nessages- >account - >passwor d- >nokey

59 ;

60 $t hi s->_hel per->redirector('login', 'account');
61

62 }

Testing Your Work

While a user may forgive the occasionally misaligned graphic or other minor error, broken account
management features are sure to be wildly frustrating and perhaps grounds for checking out a
competing website. Therefore given the mission-critical importance of the features introduced in
this chapter, you're going to want to put them through a rigorous testing procedure to make sure
everything is working properly. In this section I'll guide you through several of the most important
tests.

Making Sure the Login Form Exists

Because it's not possible for the user to login if the login form is inexplicably missing, consider
running a simple sanity check to confirm the login form is indeed being rendered within the login
view. You can use the assert QueryCount () method to confirm that a particular element and
associated DIV 1D exist within the rendered page, as demonstrated here:

public function testLogi nActi onContai nsLogi nFor ()
{
$t hi s->di spatch('/account/login');
$t hi s->assert QueryCount (' fornm#l ogin', 1);
$t hi s->assert QueryCount (' i nput[name~="enai |l "]"', 1);
$t hi s->assert QueryCount (' i nput [name~="password"]"', 1);
$t hi s->assert QueryCount (' i nput [name~="subm t"]"', 1);

Easy PHP Websites with the Zend Framework 153

|}
Testing the Login Process

Logicaly you'll want to make sure your login form is operating flawlesdly, as there are few issues
more frustrating to users than the inability to access their account due to no fault of their own.
Thankfully it'sreally easy to determine whether the login form has successfully authenticated a user,
becausetheaction will only redirect the user to the home pageif the credentialsaredeemed valid. The
following test will POST aset of valid credentialsto the Account controller'si ogi n action. Because
they arevalid, wewill assert that theredirection hasindeed occurred (usingtheasser t Redi r ect To()

method).

public function testValidLogi nRedirect sToHonePage()

{
$t hi s->r equest - >set Met hod(' POST")
->set Post (array(
‘email' =>"'w @\ gil nore.com,
"pswd’ => 'secret',
"public' => 0
)
$t hi s->di spatch('/account/| ogin');
$t hi s- >assert Control | er (' account');
$t hi s- >assert Action('login');
$t hi s- >assert Redi rect To(' /account/friends');
}

Because chances are you're going to want to test parts of the application which are only available
to authenticated users, you can create a private method within your test controller which can be
executed as desired within other tests, thereby consolidating the login-specific task. For instance,
here's what my login-specific method looks like:

private function _loginValidUser()

{

$t hi s- >r equest - >set Met hod(' POST")
->set Post (array(
"email' =>'w @jgilnore.com,
' pswd’ => 'secret',
"public' => 0

)i

Easy PHP Websites with the Zend Framework 154

$t hi s->di spatch('/account/login');

$t hi s->assert Redi rect To(' /account/friends');
$t hi s->assert True(Zend_Aut h: : get | nst ance() - >hasl dentity());

}

With this method in place, | can cdl it anywhere within the test suite as needed, as demonstrated
in the next test.

Ensuring an Authenticated User Can Access a Restricted Page

Pages such as the logout page should only be accessible to authenticated users. Because such access
control isrequired throughout many parts of GameNomad, I've created a custom action helper called
Logi nRequi r ed Which checks for avalid session. If not valid session exists, the user is redirected
to the login page. This action helper appears within the very first line of any restricted action. Of
course, you will want to make sure such helpers are indeed granting authenticated users access to
therestricted page, and so the following test will ensure an authenticated user can accessthel ogout
action. Notice how | am using the previously created _I ogi nval i duser () method to handle the
authentication process.

public function testLogout PageAvail abl eToLogged!| nUser ()
{

$t hi s->_1 ogi nVal i dUser () ;
$t hi s->di spat ch(' /account/| ogout');

$t hi s->assert Control | er (' account');
$t hi s->assert Action('logout');

$t hi s- >assert Not Redi rect To(' / account/ | ogin');

}

You'l likewise want to verify that unauthenticated users cannot access restricted pages, however at
the time of this writing the Zend Test component does not play well with redirectors used within
action helpers.

Testing the Account Registration Procedure

GameNomad requires the user to provide remarkably few items of information compared to many
registration procedures, asking only for a username, zip code, e-mail address, and password.

Easy PHP Websites with the Zend Framework 155

Nonetheless, repeatedly manually entering this datain order to thoroughly test the registration form
isan impractical use of time, and so you can instead create a test which can verify that the formis
properly receiving valid registration data and adding it to the database. Of course, thisis only part
of the registration process, because the user also needs to confirm his e-mail address by clicking on
aone-time URL before he can login to the GameNomad website. I'll talk more about the matter of
model manipulation in Chapter 11. For the moment let's focus on making sure the form is working

properly.

We know that the action should redirect the user to the login page if registration is successful, and
so can create atest which determines whether the redirection occurs following registration:

public function testUsersCanRegi st er WienUsi ngVal i dDat a()
{

$t hi s->r equest - >set Met hod(' POST')
->set Post (array(

' user nane' => 'jasongl23',

' zi p_code' => '43215',

"emai |’ => 'jasonl@y gi |l nore.coni,
' passwor d' => 'secret',

' confirm pswd' => 'secret',

)
$t hi s->di spat ch('/account/register');

$t hi s->assert Redi rect To(' /account/l ogin');

}

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

» Explain how Zend Auth knows which table and columns should be used when authenticating a
user against a database.

» At aminimum, what are the five features you'll need to implement in order to offer basic user
account management capabilities?

» Tak about the important role played by the account table's recovery column within severa
features described within this chapter.

Chapter 9. Creating Rich User
Interfaces with JavaScript and
Ajax

There'sno use hiding it; | hate JavaScript. In years past, its frightful syntax and awkward debugging
requirements had brought me to the sheer edge of insanity on more than one occasion. I'm not
alone; the language is widely acknowledged for its ability to cause even the most even-tempered
programmer to spew profanity. To put the scope of the frustration brought about by this language
another way, consider the impressive promotion of non-violent protest espoused by the likes of John
Lennon. | speculate this penchant for pacifism was at least in part attributed to hisunfamiliarity with
JavaScript.

Yet today there is really no way to call yourself a modern web developer and avoid the
language. In fact, while you might over the course of various projects alternate between several
web frameworks such as the Zend Framework, Grails (http://www.grails.org/) and Rails (http://
www.rubyonrails.org/), JavaScript will likely be the common thread shared by all projects. Thisis
because JavaScript is the special sauce behind the techniques used to create highly interactive web
pages collectively known as Ajax.

Ajax makes it possible to build websites which behave in amanner similar to desktop applications,
which offer a far more powerful and diverse array of user interface features such as data grids,
autocomplete, and interactive graphs. Indeed, users of popular services such as Gmail, Flickr,
and Facebook have quickly grown accustomed to these cutting-edge features. In order to stay
competitive, you'll want to integrate similar features into your website so as to help attract and
maintain an audience who has come to consider rich interactivity the norm rather than a novelty.

This puts us in a bit of a quandary: coding in JavaScript can be a drag, but it's become an
unavoidable part of modern web devel opment. Fortunately, many other programmers have cometo
the same conclusion, and so have put agreat deal of work into building several powerful JavaScript
frameworks which go along way towards streamlining JavaScript's scary syntax.

In this chapter I'll introduce you JavaScript and the Ajax development paradigm, focusing on the
popular jQuery JavaScript framework (http://www.jquery.com). jQuery happensto be so easy to use
that it almost makes JavaScript development fun!

Easy PHP Websites with the Zend Framework 157

Introducing JavaScript

Because JavaScript is interpreted and executed by the browser, you'll either embed it directly into
theweb page, or manage it within aseparatefilein amanner similar to that typically donewith CSS.
The latter of these two approaches is recommended. The following example demonstrates how an
external JavaScript file can be referenced:

01 <htm >

02 <head>

03 <script type="text/javascript" src="/javascript/nyjavascript.js"></script>
04 </ head>

05 <body>

06 Ce

07 </ body>

08 </htm >

In the context of the Zend Framework, thej avascri pt directory referenced in line 03 would reside
withinthe/ publi c/j avascript/ directory, so if this directory doesn't exist, go ahead and create it
now. Next create the nyj avascript . j s file, and place it in the directory. Within that file, add just
asingleline

alert("l love video ganmes!");

Load the page into the browser, and you'll see an aert box appear atop the browser window, as
shown in Figure 9.1.

The page at http://localhost says: x

I love video games!

| o OK |

Figure 9.1. Creating a JavaScript alert window

Easy PHP Websites with the Zend Framework 158

Whilethe approach of referencing an external script isrecommended, for testing purposesyou might
occasionally prefer to just directly embed the JavaScript into the HTML like so:

<ht nl >
<head>
<script type="text/javascript">
alert ("l love video ganmes!");
</script>
</ head>
<body>
</ body>
</htm >

Syntax Fundamentals

JavaScript sports countless features, and any attempt to cover even the fundamentalswithin asingle
chapter, let alone a single section, would be quite unrealistic. In fact | have cut out a great deal of
original draft material in an attempt to provide you with only what's necessary to meet this chapter's
ultimate goal, which is to teach you just enough JavaScript to take advantage of jQuery and Ajax
within the context of the Zend Framework. From there, consider continuing your learning through
the numerous online JavaScript tutorials, or by picking up one of the books mentioned in the below
note.

Note

Although many great JavaScript books have been published over the years, I've long
considered "Beginning JavaScript, Third Edition", co-authored by Paul Wilton and Jeremy
McPeak, to be particularly indispensable.

Creating and Using Variables

LikePHP, you'll want toregularly create and reference variableswithin JavaScript. Y ou canformally
define variables by declaring them using the var statement, like so:

var nessage;

JavaScript is a case-sensitive language, meaning that nessage and Message are treated as two
separate variables. Y ou can aso assign the newly declared variable a default value at creation time,
like so:

var nessage = 'l |ove video ganes!'

Easy PHP Websites with the Zend Framework 159

Alternatively, JavaScript will automatically declare variables simply by the act of assigning avalue
to one, like so:

nessage = '| | ove video ganes!';

| suggest using the former approach, declaring your variables at the top of the script when possible,
perhaps accompanied by a JavaScript comment, which looks like this:

/] Declare the default nessage
var message = 'l |ove video ganes!’

One aspect of JavaScript variable declarations which seems to confound so many developers is
scope. However theconfusioniseasily clarified: whenever avariableisdeclared outside of afunction
(JavaScript functions are introduced in the next section), it is declared in the global scope. Thisis
in contrast to JavaScript's behavior when declaring variables within a function. When declaring a
variable within afunction, it hasloca scope when declared using thevar keyword; otherwise, it has
global scope. It is very important that you memorize this simple point of differentiation, because it
causes no end of confusion for those who neglect to heed this advice.

Creating Functions
Like PHP it's possible to create custom JavaScript functions which can accept parameters and

return results. For instance, let's create a reusable function which displays the alert box presented
in previous examples:

01 <htm >

02 <head>

03 <script type="text/javascript">

04

05 /'l Displays a nessage via an alert box
06 functi on nmessage()

07

08 /] Declare the default nessage

09 var nessage = "l |ove video ganes!";
10

11 /Il Present the alert box

12 al ert (message) ;

13 }

14 </script>

15 </ head>

16 <body>

17 A

18 </ body>

19 </ htm >

Easy PHP Websites with the Zend Framework 160

As you can seg, the function's declaration and enclosure look very similar to standard PHP syntax.
Of course, like PHP the nessage() function won't execute until you call it, so insert the following
line after line 13:

nmessage();

Reloading the page will produce the same result shown in Figure 9.1.

You can pass input parameters into a JavaScript function just as you do with PHP; when defining
the function just specify the name of the variable as it will be used within the function body. For
instance, let's modify the message() method to pass along a revised statement:

01 // Displays a message via an alert box

02 function nmessage(user, hobby)

03 {

04 // Present the alert box

05 alert(user + " is the " + hobby + " player of the year!");
06 }

Y ou can then pass along a user's name and their favorite pastime to create a custom message:

message("Jason", "Euchre");

Rel oading the browser window produces an aert box identical to that shown in Figure 9.2.

The page at http://localhost says:

Jason is the Euchre player of the year!

«/ OK

Figure9.2. Using a custom function

Easy PHP Websites with the Zend Framework 161

Tip

Like PHP, JavaScript comeswith quite afew built-in functions. Y ou can peruse adirectory
of these functions here: http://www.javascriptkit.com/jsref/.

Working with Events

Much of your time working with JavaScript will be spent figuring out how to make it do something
in reaction to auser action, for instance validating aform when auser presses asubmit button. Infact,
you can instruct JavaScript to do something only after the page has compl etely loaded by embedding
theonl oad() event handler intothe page. For instance, you can direct our custommessage() function
to execute after the page isloaded by modifying the body element:

<htm >
<head>
<script type="text/javascript">

/1 Displays a nessage via an alert box
function nmessage()
{

/] Declare the default nessage

var nessage = 'l |ove video ganes!'

/Il Present the alert box
al ert (message) ;
}
</ script>
</ head>
<body onl oad="nessage()" >
</ body>
</htm >

Reload this example, and you'll see the alert window appear. The difference is that the window
appearsonly after all of the page elements have completely loaded into the browser window. Thisis
an important concept because you'll often write JavaScript code which is intended to interact with
specific page elements such as a di v element assigned the ID gane. If the JavaScript happens to
execute before this element has been loaded into the browser, then the desired functionality is sure
not to occur. Therefore you'll find this event-based approach to ensuring the JavaScript executes
only after the desired page elements are available to be quite common.

So how do you cause JavaScript to execute based on some other user action, such as clicking a
submit button? In addition to onl oad() , JavaScript supports numerous other event handlers such as

Easy PHP Websites with the Zend Framework 162

oncl i ck(), which will cause a JavaScript function to execute when an element attached to the event
handler is clicked. Add the following code within the body tag (and remove the onl oad() function
from the body element) for an example:

‘<i nput type="submit" nanme="submit" value="Click Me!" onclick="nmessage();">

The button and window which pops up once the button is clicked is shown in Figure 9.3.

Click Me!

The page at http://localhost says:

| love video games!

«/ OK

Figure 9.3. Executing an action based on some user event

The same behavior isrepeated when using asimple hyperlink, animage, or almost any other element
for that matter. For instance, try adding the following two lines to the page and clicking on the
corresponding elements:

Cick me right now </ a>

<hl onclick="nmessage();">l"mnot a |link but click me anyway! </ h1>

See Table 9-1 for alist of other useful JavaScript handlers. Try swapping out the oncl i ck handler
used in the previous examples with handlers found in this table to watch their behavior in action.

Table9.1. Useful JavaScript Event Handlers

Event Handler Description

onbl ur Executes when focus is removed from a select, text, or textarea
form field.

Easy PHP Websites with the Zend Framework 163

Event Handler Description

onchange Executes when the text in an input form field is changed.

onclick Executes when the element is clicked upon.

onf ocus Executeswhen the element is placed into focus (typically an input
form field).

onl oad Executes when the element is |oaded

onmouseover Executes when the mouse pointer is moved over an element.

onnmouseout Executeswhen the mouse pointer ismoved away from an element.

onsel ect Executeswhen text within atext or textareaform field is sel ected.

onsubnmi t Executes when aform is submitted.

onunl oad Executes when the user navigates away or closes the page.

Forms Validation

Let's consider one more example involving an HTML form. Suppose you wanted to ensure the user
doesn't leave any fields empty when posting a video game review to your website. According to
what's available in Table 9-1, it sounds like the onsubmit event handler will do the trick nicely. But
first we have to create the JavaScript function to ensure the form field isn't blank upon submission:

function i sNot Enpty(fornfield)

if (fornfield == "")
{

return fal se;
} else {
return true;

}
}

Nothing much to review here; the i sNot Enpty() function operates on the premise that if the
formfield parameter is blank, FALSE is returned, otherwise TRUE is returned.

From here, you can reuse this function as many times as you please by referencing it within another
function, which wel'll call val i date():

01 function validate()

02 {

03 /'l Retrieve the forms title field

04 title = docunent.getEl enentByld("title").val ue;

Easy PHP Websites with the Zend Framework 164

05

06 /'l Retrieve the form's review field

07 revi ew = docunent . get El enent Byl d("revi ew') . val ue;
08

09 /Il Verify neither field is enpty

10 if (isNotEnpty(title) && i sNot Enpty(review))

11 {

12 return true;

13 } else {

14 alert("All formfields are required.");
14 return fal se;

15 }

16 }

Asthisisthe most complex example presented thus far, |et's break down the code:

» Lines 04 and 06 use something called the Document Object Model (DOM) to retrieve the values
of the elements identified by the title and review identifiers. The DOM is a very powerful tool,
and one I'll introduce in detail in the next section.

» Line 10 uses the custom i sNot Enpt y() function to examine the contents of the title and review
variables. If both variables are indeed not empty, true is returned which will cause the form's
designated action to be requested. Otherwise an error message is displayed and FALSE isreturned,
causing the form submission process to halt.

Finally, construct the HTML form, attaching the onsubni t event handler to the f or melement:

<form acti on="/revi ews/ post" net hod="POST" onsubm t="return validate();">

<p>
<l abel nanme="title">Please title your revi ew </|abel >

<input type="text" id="title" name="title" val ue="" size="50" />
</ p>
<p>

<l abel nanme="revi ew' >Enter your revi ew bel ow</| abel >

<t ext area nane="revi ew' id="review' rows="10" col s="35"></textarea>
</ p>
<p>
<input type="submit" nane="submit" val ue="Post review' />
</ p>
</ forne

Should the user neglect to enter one or both of the form fields, output similar to that shown in Figure
9.4 will be presented.

Easy PHP Websites with the Zend Framework 165

Please title your review:
Great gamne! Played It for hours!

Enter vour review below

The page at http://flocalhost says:

All form fields are required.

Post rewview

Figure 9.4. Validating form fields with JavaScript

The use of the Document Object Model (DOM) to easily retrieve parts of an HTML document,
as well as user input, is a crucia part of today's JavaScript-driven features. In the next section I'll
formally introduce this feature.

Introducing the Document Object Model

Relying upon an event handler to display an alert window can be useful, however events can do so
much more. Most notably, we can use them in conjunction with a programming interface known as
the Document Object Model (DOM) to manipulate the HTML document in interesting ways. The
DOM is a standard specification built into all modern browsers which makes it trivia for you to
reference avery specific part of aweb page, such asthetitl e tag, ani nput tagwith anid of email,
or al ul tags. You can also refer to properties such asi nner HTM. to retrieve and replace the contents
of aparticular tag. Further, it's possible to perform al manner of analytical and manipulative tasks,
such as determining the number of | i entries residing within aul enclosure.

JavaScript provides an easy interface for interacting with the DOM, done by using aseries of built-in
methods and properties. For instance, suppose you wanted to retrieve the contents of ap tag (known
as an element in DOM parlance) having an id of nessage. The element and surrounding HTML
might look something like this:

Easy PHP Websites with the Zend Framework 166

o1 ...

02 <p id="nessage">Your profile has been | oaded. </ p>

03 <hl id="ganertag">w gi | nore</ h1>

04 Location: <b id="city">Col unbus, <b id="state">Chi o
05 ...

To retrieve the text found within the p element (line 02), you would use the following JavaScript
command:

<script type="text/javascript">
nmessage = docunent. get El ement Byl d(" nmessage") . i nner HTM,;
</ script>

You can prove the text was indeed retrieved by passing the message variable into an aert box in
alinethat follows:

alert("Message retrieved: " + nmessage);

Adding theal ert () function produces the alert box containing the message "Y our profile has been
loaded.”.

Retrieving the text is interesting, but changing the text would be even more so. Using the DOM
and JavaScript, doing so is amazingly easy. Just retrieve the element ID and assign new text to the
i nner HTML property!

docunent . get El enent Byl d(" nmessage") . i nnerHTM. = "Your profile has been updated!";

Simply adding this to the embedded code doesn't make sense, because doing so will change the text
fromtheoriginal to the updated version before you really have achanceto see the behavior in action.
Therefore let's tie this to an event by way of creating a new function:

functi on changet ext ()

{
}

docunent . get El enent Byl d(" nmessage") . i nnerHTM. = "Your profile has been updated!";

Next, within the HTML body just tie the function to an oncl i ck event handler as done earlier:

0ick here to change the text

Everything you've learned so far lays the foundation for integrating Ajax-oriented features into your
website. However, because your success building Ajax-driven featuresis going to rest heavily upon
your ability to write clean and coherent JavaScript, in the next section I'll introduce you to thejQuery
library, which we'll subsequently use to create these great features.

Easy PHP Websites with the Zend Framework 167

Introducing jQuery

In recent years, many ambitious efforts have been undertaken to create solutions which abstracted
many of the tedious, repetitive, and difficult tasks faced by developers seeking to integrate
JavaScript-driven featuresinto their websites. By taking advantage of these JavaScript libraries, the
most popular of which are open source and therefore freely available to all users, developers are
able to write JavaScript not only faster, but more efficiently and with less errors than ever before.
Furthermore, because many of these libraries are extendable, other enterprising developers are able
to contribute their own extensions back to the community, greatly increasing library capabilities.

JavaScript libraries also deal with another significant obstacle that beginning web devel opers tend
to overlook: the matter of cross-browser compatibility. Although significant improvements have
been made in recent years to ensure uniform behavior within all browsers, a great deal of pain
remains when it comes to writing cross-browser JavaScript code that is perfectly compatible in all
environments. Most JavaScript libraries remove, or at least greatly reduce, this pain by providing
you with a single interface for implementing a feature which the library will then adjust according
to the type of browser being used by the end user.

One of the most popular such librariesisjQuery (http://www.jquery.com/). Created in early 2006 by
John Resig (http://www.gjohn.org/), a seemingly tireless JavaScript guru who among other thingsis
aJavaScript Tool Developer for the Mozilla Corporation (the company behind the Firefox browser),
jQuery has fast become one of the web development world's most exciting technologies. With
thousands of websites already using the library, and embraced by companies such as Microsoft and
Nokia, chances are you've aready marveled at its impressive features more than once.

Caution

Don't think of jQuery or any other JavaScript library as a panacea for learning JavaScript;
rather it complements and extends the language in an effort to make you a more efficient
JavaScript devel oper. Ultimately, gaining asound understanding of the JavaScript |anguage
will serve to make you a better jQuery developer, so be sure to continue brushing up on
your JavaScript skills as time allows.

Installing jQuery

jQuery is salf-contained within a single JavaScript file. While you could download it directly from
the jQuery website, there's a far more efficient way to add the library to your site. Google hosts
all released versions of the library on their lightning-fast servers, and because many sites link to

Easy PHP Websites with the Zend Framework 168

Google's hosted version, chances are the user aready has a copy cached within his browser. To
include the library within your site, add the following lines within the head enclosure;

<script src="http://ww.googl e. conijsapi"></script>
<script type="text/javascript" >

googl e. | oad("j query", "1");
</script>

In this example, the 1 parameter tells Google to serve the most recent stable 1.X version available.
If you need the highest release in the 1.3 branch, pass along 1. 3. If you desire a specific version,
such as 1. 4. 4, pass that specific version number.

If you would like to peruse the source code, you can download the latest release from the jQuery
website. Thereyou'll find a"minified" and an uncompressed version of thelatest release. Y ou should
download the uncompressed version because in the minified version all code formatting has been
eliminated, producing a smaller file size and therefore improved loading performance.

Managing Event Loading

Because much of your time spent working with jQuery will involve manipulating the HTML DOM
(the DOM comprises all of the various page elements which you may want to select, hide, toggle,
modify, animate, or otherwise manipulate), you'll want to make sure the jQuery JavaScript doesn't
execute until the entire page has |oaded to the browser window. Therefore you'll want to encapsul ate
your jQuery code within the googl e. set OnLoadCal | back() method, like this:

<script type="text/javascript" >
googl e. set OnLoadCal | back(function() {
alert("jQuery is cool.")

1)

</scri pt >

Add the set OnLoadCal | back() method to your newly jQuery-enabled web page, and you'll seethe
alert box presented in Figure 9.5.

Easy PHP Websites with the Zend Framework 169

The page at http://localhost says:

jQuery is cool.

=/ OK

Figure9.5. Triggering an alert box after the DOM has loaded

If you're not loading the jQuery library from Google's CDN, the loading event syntax will look like
this:

$(docunent) . ready(function() {
alert("jQuery is cool.");

b

You can use this syntax when the jQuery library is being served from your server, however when
using jQuery in conjunction with Google's content distribution mechanism you'll need to use the
former syntax.

DOM Manipulation

One of the most common tasks you'll want to carry out with jQuery is DOM manipulation.
Thankfully, jQuery supports an extremely powerful and flexible selector enginefor parsing the page
DOM in avariety of ways. In this section I'll introduce you to this feature's many facets.

Retrieving an Object By ID
You'l recall from earlier in this chapter that JavaScript can retrieve aDOM object by its 1D using the

get El enent Byl D() method. Because thisis such acommon task, jQuery offersashortcut for calling
thismethod, known asthedollar sign function. Thus, thefollowing two callsareidentical in purpose:

docunent . get El enent Byl d("title");
$("#title");

var title
var title

Easy PHP Websites with the Zend Framework 170

In each case, title would be assigned the object identified by a DIV such asthis:

‘ <p id="title">The Hunt for Red Cctober, by Tom Cl ancy</p>

Keep in mind that in both casestitle is assigned an object, and not the element contents. For
instance, you can use the object'st ext () method to retrieve the element contents:

‘alert(title.text());

To retrieve the element content length, reference thel engt h attribute like this:

‘alert(title.text().Iength);

Several other properties and methods exist, including several which alow you to traverse an
element's siblings, children, and parents. Consult the jQuery documentation for al of the details.

Retrieving Objects by Class

To retrieve all objects assigned to a particular class, use the same syntax as that used to retrieve an
element by its 1D but with a period preceding the class name rather than a hash mark:

var titles
var titles

docunent . get El ement Byl d(".title");
$("title");

For instance, given the following HTML, titles would be assigned an array of three objects:

<p class="title">The Hunt for Red Cctober, by Tom d ancy</p>
<p class="title">0On Her Majesty's Secret Service, by |lan Fl em ng</p>
<p class="title">A Spy in the G ntnment, by Donal d West| ake</ p>

Toprovethattitl es isindeed an array containing three objects, you can iterate over the array and
retrieve the text found within each object using the following snippet:

$. each(titles, function(index)

alert($(this).text());
})s

jQuery's dollar sign syntax can aso be used to retrieve HTML elements. For instance, you can use
this call to retrieve the all h1 elements on the page:

var headers = $("hl");

Easy PHP Websites with the Zend Framework 171

Retrieving and Changing Object Text

As was informally demonstrated in several preceding examples, to retrieve the text you'll need to
call the object's. t ext () method. The following example demonstrates how this is accomplished:

<script type="text/javascript" >
alert ($("#title").text())
</script>
<body>
<p id="title">The Hunt for Red Cctober, by Tom Cl ancy</p>
</ body>

Tochangethetext, all you needto doispasstextintothe. t ext () method. For instance, thefollowing
example will swap out Tom Clancy's book with a book by Donald Westlake:

<script type="text/javascript">
googl e. set OnLoadCal | back(function() {
$("#title").text("A Spy in the O ntnent, by Donal d Westl ake")
1)
</scri pt >
<body>
<p id="title">The Hunt for Red Cctober, by Tom C ancy</ p>
</ body>

Working with Object HTML

Thetext () method behaves perhaps a bit unexpectedly when an object's text includes HTML tags.
Consider the following HTML snippet:

‘<p id="title"><i >The Hunt for Red Cctober</i> by Tom Cl ancy</ p>

If you were to retrieve the title ID's text using the t ext () method, the following string would be
returned:

‘The Hunt for Red Cctober, by Tom Cl ancy

So what happened? Thet ext () method will strip out any HTML tags found in the text, which might
be perfectly acceptable depending upon what you want to do with the text. However, if you'd also
likethe HTML, usetheht ni () method instead:

var title = $("#title").htnl ()

The same concept applies when adding or replacing text. If the new text includes HTML, and you
attempttoinsertitusingt ext () , theHTML will be encoded and output astext on the page. However,

Easy PHP Websites with the Zend Framework 172

if you use ht mi () when inserting HTML-enhanced text, the tags will be rendered by the browser
as expected.

Determining Whether a DIV Exists

Because jQuery or a server-side language such as PHP could dynamically create DOM elements
based on some predefined criteria, you'll often need to first verify an element's existence before
interacting with it. However, you can't just check for existence, because jQuery will always return
TRUE even if the DIV does not exist:

if ($("#title")) {
alert("The title div exists!")

}

However, an easy way to verify existence is to use one of the members exposed to each available
DIV, for instance| engt h:

if ($("#title").length >0) {
alert("The title div exists!");
}

Removing an Element

Toremove an element from the page, usether enove() method. For instance, the following example
will remove the element identified by the news ID from the page:

$("title").renmove();

<div id="title"><i>The Day of the Jackal </i>, by Frederick Forsyth</div>

Retrieving a Child

Many of the previous elements in this section referenced a book title and its author, with some of
the examples delimiting the book title with italicstags (i):

‘<div id="title"><i >The Day of the Jackal </i>, by Frederick Forsyth</div>

What if you wanted to retrieve the book title, but not the author? Y ou can use jQuery's child selector
syntax to retrieve the value of a nested element:

‘var title = $("#title > i").text();

Similar features exist for retrieving an e ement's siblings and parents. See the jQuery documentation
for more details.

Easy PHP Websites with the Zend Framework 173

Event Handling with jQuery

Of course, al of the interesting jQuery features we've introduced so far aren't going to happen in
avacuum. Typically DOM manipulation tasks such as those described above are going to occur in
response to some sort of user- or server-initiated event. In this section you'll learn how to tie jQuery
tasks to a variety of events. In fact, you've already been introduced to one such event, namely the
Google Ajax APl'sset OnLoadCal | back() method. This code contained within it executes once the
method confirms that the page has successfully loaded.

jQuery can respond to many different types of events, such as a user-initiated mouse click, double-
click, or mouseover. Asyou'll seelater in this chapter, it can also monitor for changes to web forms,
such as when the user begins to insert text into a text field, changes a select box, or presses the
submit button.

Creating Your First Event Handler

Earlier in this chapter | talked about JavaScript's predefined event handlers, including mouse click
oncl i ck, mouse over nouseover , and form submission onsubni t). jQuery works in the same way,
although its terminology occasionally strays from that used within standard JavaScript. Table 9-2
introduces jQuery's event types.

Table9.2. jQuery's supported event types

Event Handler Description

bl ur Executes when focus is removed from a select, text, or textarea
form field.

change Executes when the value of an event changes.

click Executes when an element is clicked.

dbl cli ck Executes when an element is double-clicked.

error Executes when an element is not |oaded correctly.

focus Executes when an element gains focus.

keydown Executes when the user first presses a key on the keyboard.

keypr ess Executes when the user presses any key on the keyboard.

keyup Executes when the user releases a key on the keyboard.

| oad Executes when an element and its contents have been loaded.

Easy PHP Websites with the Zend Framework 174

Event Handler Description

nmousedown Executes when the mouse button is clicked atop an element.

nouseent er Executes when the mouse pointer enters the element.

nousel eave Executes when the mouse pointer leaves the element.

nousenove Executes when the mouse pointer moves while inside an element

nouseout Executes when the mouse pointer leaves the element.

nouseover Executes when the mouse pointer enters the element.

nmouseup Executes when the mouse button is released while atop an
element.

resize Executes when the size of the browser window changes.

scrol | Executes when the user scrolls to a different place within the
element.

sel ect Executes when the user selects text residing inside an element.

unl oad Executes when the user navigates away from the page.

jQuery actually supports numerous approaches to tying an event to the DOM, however the easiest
involves using an anonymous function. In doing so, we'll bind the page element to one of the events
listed in Table 9-2, defining the function which will execute when the event occurs. The following
example will toggle the CSS class of the paragraph assigned the ID title;

01 <style type="text/css">

02 .clicked { background: #CCC, padding: 2px;}
03 </styl e>

04

05 <script type="text/javascript" >

06

07 google.load("jquery", "1");

08

09 googl e. set OnLoadCal | back(function() {

10 $("#title").bind("click", function(e){
11 $("#title").toggl ed ass("clicked")

12 B

13 1)

14

15 </script>

16

17 </ head>

18 <body>

Easy PHP Websites with the Zend Framework 175

19 <p id="title">The Hunt for Red Cctober, by Tom C ancy</ p>
20 </ body>

Let's review the code:
 Lines 01-03 define the style which will be toggled each time the user clicks on the paragraph.

» Lines10-12 definethe event handler, binding an anonymous function to the element ID title. Each
timethiselement ID is clicked, the CSS class clicked will be toggled.

* Line 19 defines the paragraph assigned the element 1D title.

Try executing this script to watch the CSS class change each time you click on the paragraph. Then
try swapping out the click event with some of the others defined in Table 9-2.

Introducing Ajax

Y ou might be wondering why | choseto namethis section title "Introducing Ajax". After all, haven't
we been doing Ajax programming in many of the prior examples? Actually, what we've been doing
isfancy JavaScript programming involving HTML, CSS and the DOM. Asdefined by the originator
of theterm Ajax Jesse James Garrett, several other requisite technologies are needed to complete the
picture, including notably XML (or similarly globally understood format) and the XM L HttpRequest
object. With the additional technologies thrown into the mix, we're able to harness the true power
of this programming technique, which involves being able to communicate with the Web server in
order to retrieve and even update data found or submitted through the existing Web page, without
having to reload the entire page!

By now you've seen the power of Ajax in action countless times using popular websites such as
Facebook, Gmail, and Y ahoo!, so | don't think | need to belabor the advantages of this feature. At
the same time, it's doubtful an in-depth discussion regarding how all of these technologies work
together iseven practical, particularly becauseit's possible to take advantage of them without having
to understand the gory details, much in the same way we can use many Zend Framework components
without being privy to the underlying mechanics.

Passing Messages Using JSON

Ajax-driven features are the product of interactions occurring between the client and server, which
immediately raisesaquestion. If theclient-sidelanguageis JavaScript and the server-sidelanguageis
PHP, how isdata passed from one side to the other in aformat both languages can understand? There
are actually several possible solutions, however JSON (JavaScript Object Notation) has emerged as
the most commonly used format.

Easy PHP Websites with the Zend Framework 176

JSON is an open standard used to format data which is subsequently serialized and transmitted over
anetwork. Unlike many XML dialectsis actually quite readable, although of courseit is ultimately
intended for consumption by programming languages. For instance, the following presents a JSON
snippet which represents an object describing a video game:

{
"asin": "B002I 0K780",

"name": "LittleBi gPl anet 2",
“rel": "January 18, 2011",
"price":"59.99"

}

Both jQuery and PHP offer easy ways to both write and read JSON, meaning you'll be able to pass
messages between the client and server without having to worry about the complexities of JSON
message formatting and parsing. Y ou'll see how easy and frankly transparent it is to both construct
and parse these messages in the exampl e that follows.

Validating Account Usernames

Any social networking website requires users to be uniquely identifiable, logically because users
need to be certain of their friends identities before potentially sharing personal information.
GameNomad uses a pretty simplistic solution for ensuring users are uniquely identifiable, done by
requiring users to choose a unigque username when creating a new account.

Such a constraint can be a source of frustration for users who compl ete the registration form only to
be greeted with an error indicating that the desired username has already been taken. On a popular
website it's entirely likely that a user could submit the form several times before happening to
choose an unused username, no doubt causing some frustration and possibly causing the user to give
up altogether. Many websites alleviate the frustration by providing users with real-time feedback
regarding whether the desired username is available, done by using Ajax to compare the provided
username with those already found in the database, and updating the page asynchronously with some
indication of whether the username is available.

In order to verify the availability of a provided username in real-time an event-handler must be
associated with the registration form's user nane field. The user nane field looks like this:

<i nput type="text" nanme="usernane" id="usernanme" val ue="" size="35">

Because we want validation to occur the moment the user entersthe desired usernameinto thisfield,
abl ur event isattached to theuser nane field. Thebl ur event handler will execute as soon as focus
is taken away from the associated DOM element. Therefore when the user completes the user nane
field and either tabs or moves the mouse to the next field, the handler will execute.

Easy PHP Websites with the Zend Framework 177

This handler is presented below, followed by some commentary:

01 $(' #username').bind('blur', function (e) {

02

03 $.getJSON('/ws/usernamne'

04 {usernane: $('#username').val ()},

05 function(data) {

06 if (data == "TRUE") {

07 $("#avail abl e").text("This username is available!")
08 } else {

09 $("#avail abl e").text("This username is not avail able!")
10 }

11 }

12)

13

14 1),

Let's review the code:

e Line 01 defines the handler, associating a bl ur handler with the DOM element identified by
user nane.

» Line 03 specifiesthat a GET request will be sent to / ws/ user nane (Thews controller's user name
action), and that JSON-formatted data is expected in return.

» Line 04 sends a GET parameter named user nane t0 / ws/ user nane. This parameter is assigned
the value of whatever isfound in the user nane field.

 Lines 05-11 define the anonymous function which executes when the response is returned to the
handler. If the responseis TRUE, the usernameisavail able and the user will be notified accordingly
(by updating aDIV associated withtheID avai | abl e). Otherwise, the username has already been
taken and the user will be warned.

Next let's examine the ws controller (ws is just a convenient abbreviation for web services) and the
user nanme action used to verify the username's existence. This controller is presented next, followed
by some commentary:

01 <?php

02

03 class WsControl | er extends Zend_Control |l er_Action
04 {

05

06 public function init()

07 {

Easy PHP Websites with the Zend Framework 178

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 }

$t hi s->em = $t hi s->_hel per->EntityManager();
$t hi s->_hel per - >l ayout () - >di sabl eLayout () ;
Zend_Control | er _Front::getlnstance()

->set Par an(' noVi ewRenderer', true);

public function usernameAction()

/! Retrieve the provided usernane
$username = $t hi s->_request - >get Par an(' user nane') ;

/| Does an account associated with usernane already exist?
$account = $t hi s- >em >get Repository(' Entities\Account')
->f i ndOneByUser nanme($user nane) ;

/1 1f $account is null, the usernane is avail abl e
if (is_null($account))
{
echo json_encode(" TRUE");
} else {
echo j son_encode("FALSE") ;

}

Let's review the code:

» Lines06-12 define the controller'si ni t method. In this method we'll disable both the layout and
view renderer, because the controller should not render anything other than the returned JSSON-
formatted data.

» Lines 14-32 define the user nane action. This is pretty standard stuff by this point in the book,
involving using Doctrine to determine whether the provided username aready exists. If it doesn't,
TRUE is returned to the caller, otherwise FALSE is returned.

Keep in mind that you shouldn't rely solely upon JavaScript-based features for important validation
tasks such as verifying username availability; a malicious user could disable JavaScript and wreak
abit of havoc by introducing duplicate usernames into the system. To be safe, you should aso carry
out similar validation procedures on the server-side.

Easy PHP Websites with the Zend Framework 179

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

» Why should you link to the jQuery library via Google's content distribution network rather than
store aversion locally?

» What role does jQuery's $. get JSON method play in creating the Ajax-driven feature discussed
earlier in this chapter?

Chapter 10. Integrating Web
Services

Dataisthelifeblood of today's economy, with companies like Google, Microsoft, and Amazon.com
spending billions of dollars amassing, organizing, parsing, and analyzing astoundingly large sums
of information about their products, services, users, and the world at large. So it may seem
counterintuitive that all of the aforementioned companies and many others make this data available
for othersfor free.

By exposing this data through an application programming interface (API) known as aweb service,
their goa is to provide savvy developers with a practical way to present this data to others.
Additional exposure will hopefully lead to increased interest in that company's offerings, with
increased revenues to follow. A great example of this strategy is evident in Amazon.com's Product
Advertising API. Viathe Product Advertising API, Amazon exposesinformation about almost every
product in what is undoubtedly the largest shopping catalog on the planet, including the product
title, manufacturer, price, description, images, sales rank, and much more. You're free to use this
information to create new and interesting online services, provided you follow the API's terms of
service, which among other requirements demands that any product information retrieved from the
API islinked back to the product's primary Amazon product description page.

Other web services such as the Google Maps APl and Twitter API, expose both data and useful
features which allow you to interact with the service itself. For instance, the Google Maps API
provides you with not only the ability to render a map centered over any pair of coordinates, but
also the opportunity to plot markers, routes, and create other interesting location-based services.
Likewise, the Twitter API not only gives you the ability to search the ever-growing mountain of
tweets, but also the ability to update your own account with new updates.

The Zend Framework offers a particularly powerful set of web services-related components which
connect to popular APIsincluding those offered by Amazon.com, eBay, Flickr, Google, Microsoft,
Twitter, Y ahoo, and others. Inthischapter I'll introduce you to Zend_Service Amazon (the gateway
to the Product Advertising API), a Zend Framework component which figures prominently into
GameNomad, and also show you how easy it is to integrate the Google Maps API into your Zend
Framework application despite the current lack of aZend Framework Google Maps APl component.

Easy PHP Websites with the Zend Framework 181

Introducing Amazon.com's Product Advertising API

Having launched the Associates program back in 1996, before much of the world had even
heard of the Internet, Amazon.com founder Jeff Bezos and his colleagues clearly had a prescient
understanding of the power of hyperlinking. By providing motivated third-parties, known as
associates, with an easy way to promote Amazon products on their own websites and earn a
percentage of any sales occurring as aresult of their efforts, Amazon figured they could continue to
grow market sharein the fledgling e-commerce market. Some 13 years|ater, the Amazon Associates
program is an online juggernaut, with everybody from large corporations to occasional bloggers
using the program to enhance the bottom line.

With over adecade of experience under their belts, Amazon has had plenty of time and opportunity
to nurture their Associates program. Early on in the program's lifetime, associates options were
limited to the creation of banners and other basic links, however over time the program capabilities
grew, with today's associates given awealth of toolsfor linking to Amazon products using a variety
of links, banners, widgets, search engines. Users are al so provided with powerful salesanalysistools
which help them gauge the efficacy of their efforts.

Along the way, Amazon.com unveiled the shining gem of the associates program: the Amazon
Product Advertising API (formerly known as the Amazon Associates Web Service). This service
made Amazon's enormous product catalog available via an API, giving developers the ability to
retrieve and manipulate this datain new and creative ways. Viathis APl developers have access to
all of the datathey could conceivably need to build afascinating new solution for perusing Amazon
products, including product titles, ASINs (Amazon's internal version of the UPC code, known as
the Amazon Standard Identification Number), product release dates, prices, manufacturer names,
Amazon sales ranks, customer and editorial reviews, product relations (productsidentified as being
similar to one another), images, and much more!

But before you can begin taking advantage of this fantastic service, you'll need an Amazon
customer account. I'll presume like the rest of the world you already have one but if not head
over to Amazon.com and create that now. Additionally, you'll probably want to create an Amazon
Associates account so you can potentially earn additional revenue when linking products back to
their Amazon.com product page.

Joining the Amazon Associates Program

Joining the Amazon Associates Program is free, and only requires you to complete a short
registration forminwhich you'll provide your payment and contact information, website name, URL
and description, in addition to declare agreement to the Amazon A ssoci ates operating agreement. To

Easy PHP Websites with the Zend Framework 182

register for the program, head over to https:/affiliate-program.amazon.com/ and click on the Joi n
now for FREE! button to start the process.

You'll be prompted to provide information about the website you intend on using to advertise
Amazon products. After providing this information and agreeing to the Amazon Associates
Operating Agreement, a unique Associates ID will be generated. As you'll soon learn, you'll attach
this associate ID to the product URLs so Amazon knows to what account they should credit the
potential purchase. At this point you'll also be prompted to identify how you'd like to be paid, either
by direct deposit, check, or Amazon gift card.

Creating Your First Product Link

Although the point of this section is to introduce the Amazon Product Advertising AP, it's worth
taking a moment to understand how to easily create Amazon product URLs which include your
affiliate ID. In order to be credited for any salestaking place as aresult of using your afiliate links,
you'll need to properly include your Associate ID within the product link. When using Amazon's
automated wizards for creating product links (head over to https://affiliate-program.amazon.com/
to learn more about these) you'll find these links to be extremely long and decidedly not user-
friendly. However, they support a shortcut which allows you to create succinct alternative versions.
For instance, the following link will point usersto Amazon's product detail page for the video game
Halo 3 for the Xbox 360, tying the link to GameNomad's affiliate account:

htt p: // ww. amazon. coni exec/ obi dos/ ASI N BOOOFRUONU/ ganenonad- 20

As you can seg, this link consists of just two pieces of dynamic information: the product's ASIN,
and the associate identifier. Don't believe it's this easy? Head on over to the Amazon Associates
Link Checker (http://goo.gl/{OmIP) and test it out. Enter the link into the form (you'll need to swap
out my Associate ID with your own), and press the Load Link button. The page will render within
an embedded frame, confirming you're linking to the appropriate product. Once rendered, click the
Check Li nk button to confirm the page is linked to your associate identifier.

Of course, you'll probably want to include much more than a mere few links. Using the Amazon
Product Advertising API, we can do this on alarge scale. I'll devote the rest of this section to how
you can use the API to quickly amass alarge product database.

Creating an Amazon Product Advertising APl Account

To gain access to Amazon's database and begin building your catalog, you'll need to create an API
account. After completing the registration process you'll be provided with two access identifiers
which you'll use to sign into the API. To obtain an account, head over to http://aws.amazon.com/

Easy PHP Websites with the Zend Framework 183

associates/ and click thesi gn Up Nowbutton. Y ou'll be asked to signinto your existing Amazon.com
account, and provide contact information, your company name or website, and the website URL
where you'll be invoking the service. You'll also be asked to read and agree to the AWS Customer
Agreement. Please read thisagreement carefully, because there are some stipul ations which can most
definitely affect your ability to use thisinformation within certain applications. Once done, Amazon
will confirm the creation of your account. Click on the Manage Your Account link to retrieve your
keys. From here click on the Access Identifiers link. You'll be presented with two identifiers,
your Access Key |Dandyour Secret Access Key. Copy these keys into your appl i cation. i ni

file, along with your associate ID:

amazon. product _adverti si ng. public. key = "12345678ABCDEFGH JK"
amazon. product _adverti sing. public. private. key = "KJ|I HGFESECRET876"
amazon. product _adverti sing. country = "US"

amazon. associ ate_i d = "ganenonmad- 20"

WEe'll usethese keysto connect to Amazon using the Zend_Service_Amazon component, introduced
in the next step.

Retrieving a Single Video Game

Amazon.com haslong used a custom product identification standard known as the Amazon Standard
Identification Number, or ASIN. These 10-digit aphanumerical strings uniquely identify every
product in the Amazon.com catalog. Of course, you need to know what the product's ASIN isin
order to perform such a query, so how do you find it? The easiest way is to either locate it within
the product's URL, or scroll down the product's page where it will be identified alongside other
information such as the current Amazon sales rank and manufacturer name. For instance, the ASIN
for Halo 3 onthe Xbox 360 isBoooFRUONU. Withthat in hand, we can usetheZend Services Amazon
component to query Amazon. Use the following code snippet to retrieve the product details
associated with the ASIN BOOOFRUONU:

01 $amamzonPublicKey = Zend_Registry::get('config")

02 - >amazon- >pr oduct _adverti si ng- >publ i c- >key;
03 $ammzonPrivateKey = Zend_Registry::get('config')

04 - >amazon- >product _adverti si ng- >pri vat e- >key;
05

06 $ammzonCountry = Zend_Registry::get('config')->anazon->country;

07

08 $amazon =

09 new Zend_Servi ce_Amazon($amazonPubl i cKey, $amazonCountry, $amazonPrivateKey);
10

Easy PHP Websites with the Zend Framework 184

11 $item = $ammzon- >i t enLookup(' BOOOFRUONU , array(' ResponseG oup' => 'Mediuni));
12

13 echo "Title: {$item>Title}
";

14 echo "Publisher: {$item >Manufacturer}
";

15 echo "Category: {$item >Product G oup}";

Although I'd venture a guess this code is self-explanatory, |et's nonetheless expand upon some of
its key points:

» Lines01-06 retrievetheassigned Product Advertising API public and private keys, and the country
setting. I'm based in the United States and so have set this to "US", however if you were in
the United Kingdom you'd presumably want to use the product catalog associated with http:/
www.amazon.co.uk and so you'll set your country code to UK. See the Product Advertising AP
manual for acomplete list of available codes.

» Lines 08-09 instantiates the Zend_Service Amazon component class, readying it for subsequent
authentication and product retrieval.

 Line 11 searchesthe catalog for a product identified by the ASIN BoooFRUONU. Asyou'll seelater
in this chapter, we can also perform open-ended searches using criteria such as product title and
manufacturer.

» Lines13-15 output the returned product'stitle, manufacturer, and product group. Y ou can think of
the product group as an organizational attribute, like a category. Amazon has many such product
groups, among them Books, Vi deo Ganes, and Sporti ng Goods.

Executing this code returns the following output:

Title: Halo 3
Publ i sher: M crosoft
Cat egory: Video Ganes

Setting the Response Group

Tomaximizeefficiency bothintermsof bandwidth usage and parsing of the returned object, Amazon
empowersyou to specify the degree of product detail you'd like returned. When it comesto querying
for general product information, typically you'll choose from one of three levels:

e Small: The smal | group (set by default) contains only the most fundamental product attributes,
including the ASIN, creator (author or manufacturer, for instance), manufacturer, product group
(book, video game, or sporting goods, for instance), title, and Amazon.com product URL.

Easy PHP Websites with the Zend Framework 185

e Medium; The Medi umgroup contains everything found in the smal I group, in addition to attributes
such asthe product's current price, editorial review, current salesrank, the availability of thisitem
in terms of the number of new, used, collectible, and refurbished units made available through
Amazon.com, and links to the product images.

e Large: The Large group contains everything available to the Medi umgroup, in addition to data
such asalist of similar products, the names of tracks if the product groupisaCD, alist of product
accessories if relevant, and a list of available offers (useful if a product is commonly sold by
multiple vendors via Amazon.com). Hopefully it goes without saying that if you're interested in
retrieving just the product'sfundamental attributes such asthetitleand price, you should be careful
to choose the more streamlined Medi um group, as the amount of data retrieved when using the
Lar ge group is significantly larger than that returned by the former.

If you'reinterested in retrieving only aspecific set of attributes, such astheimage URL s or customer
reviews, then consider using one of the many available specialized response groups. Among
these response groupsinclude | nages, Sal esRank, Cust oner Revi ews, and Edi t or i al Revi ew. ASan
example, if you'd like to regularly keep tabs of solely a product's latest Amazon sales rank, there's
logically no need to retrieve anything more than the rank. To forego retrieving superfluous data, use
the sal esRank response group:

$i tem = $anmmzon- >i t enLookup(' BOOOFRUONU , array(' ResponseG oup' => ' Sal esRank'));
echo "The latest sales rank is: {$item >Sal esRank}";

Tip
TIP. Determining which attributes are available to the various response groups can be a

tedious affair. To help sort out the details, consider downloading the documentation from
http://aws.amazon.com/associates .

Displaying Product Images

Adding an image to your product listings can greatly improve the visual appea of your site. If
your queries are configured to return a Medi umor Lar ge response group, URLSs for three different
image sizes (available viathe snal | | mage, Medi um nmage, and Lar gel mage objects) are included in
the response. Unless you require something el se only available within the Lar ge response group, use
the Medi umgroup in order to save bandwidth, as demonstrated here:

$i tem = $anmmzon- >i t enLookup(' BOOOFRUONU , array(' ResponseGroup' => 'Medium));
echo $this->view >item >Smal | | mage->Url ;

Executing this code returns the following URL ;

Easy PHP Websites with the Zend Framework 186

‘ http://ecx. i mages- amazon. conl i mages/ | / 41Vhj YDVLQL. _SL75_. j pg

If you want to include the image within aview, passthe URL into an
<i mg></i mg>
tag:

‘<i ng src="<?= $this->tem>Smal | | mage->Url; ?>" />

You might be tempted to save some bandwidth by retrieving and storing these images locally. |
suggest against doing so for two reasons. First and most importantly, caching the image is not
allowed according to the Product Advertising API's terms of service. Second, as the above example
indicates, the image filenames are created using a random string which will ensure the outdated
images aren't cached and subsequently used within a browser or proxy server should a new image
be made available by Amazon. The implication of the latter constraint is that the URLs shouldn't be
cached either, since they're subject to change. Of course, rather than repeatedly contact the Amazon
servers every time you want to display a URL, you should cache the image URLSs, however should
only do so for 24 hours do to their volatile nature. The easiest way to deal with thisissueisto create
adaily cron job which cycles through each item and updates the URL accordingly.

Putting it All Together

Believe it or not, by now you've learned enough to create a pretty informative product interface.
Let's recreate the layout shown in Figure 10.1, which makes up part of the GameNomad website.

LittIEBigPIanEt FLRYSTRTION =
59,99 (5 i, smancon

Publisher: Sony Computer Entertainment

Platform: PlaySkation 3

Release Date: October 28, 2008

Current Amazon.com Sales Rank: £514

M you cwn LittleBig Planet? Add it to your liorary by [0g0ing ingo GameMomad acoount. Mot
a memiber? Joining is free and only takes a moment! fegister nopw!

Figure 10.1. Assembling a video game profile

Easy PHP Websites with the Zend Framework 187

Let's start by creating the action, which will contact the web service and retrieve the desired game.
Assume the URL is acustom route of the format ht t p: / / wwv. gamenonad. cont games/ BOOOFRUONU.
This code contains nothing you haven't already encountered:

public function showAction()

{

// Retrieve the ASIN
$asin = $t hi s->_request->get Paran(' asin');

Il Query AWS
$amazonPubl i cKey = Zend_Regi stry::get('config')

- >amazon- >pr oduct _adverti si ng- >publ i c- >key;
$amazonPri vat eKey = Zend_Registry::get('config')

- >amazon- >pr oduct _adverti si ng- >pri vat e- >key;

$amazonCountry = Zend_Regi stry::get('config')->amazon->country;

$amazon =
new Zend_Servi ce_Amazon($amazonPubl i cKey, $amazonCountry, $amazonPrivateKey);

$t hi s->vi ew>i tem =
$amazon- >i t emLookup(' BOOOFRUONU , array(' ResponseG oup' => 'Mediun));

}

Once the query has been returned, all that's left to do is populate the data into the view, as is
demonstrated here:

<hl><?= $this->item>Title; ?></hl>
<inmg src="<?= $this->tem >Medi um mage->url; ?2>" />
Publ i sher </ b>: <?= $t hi s->i t em >Manuf acturer; ?>

Rel ease Dat e</ b>:

<?= $t hi s- >Rel easeDat e($t hi s->i t em >Rel easeDate)); ?>

Amazon. com Pri ce: <?= $this->item >FormattedPrice; ?>

Lat est Amazon.com Sal es Rank</ b>:

<?= $t hi s- >Sal esRank($t hi s->i t em >Sal esRank); ?>

Like the controller, we're really just connecting the dots regarding what's been learned here and in
other chapters. Perhaps the only worthy note is that a few custom view helpers are used in order to
format the publication date and sales rank. Within these view helpers native PHP functions such as
strtotime(), date() and number _format () are used in order to convert the returned values into
more desirable formats.

Of course, because GameNomad isalive website, the Product Advertising API isn't actually queried
every time a video game's profile page is retrieved. Much of this data is cached locally, and

Easy PHP Websites with the Zend Framework 188

regularly updated in accordance with the terms of service. Nonetheless, the above example nicely
demonstrates how to use the web service to pull this data together.

Searching for Products

All of the examples provided so far presume you have an ASIN handy. But manually navigating
the Amazon.com website to find them is a tedious process. In fact, you might not even know the
product's specific title, and instead just want to retrieve all products having a particular keyword in
the title, or made by a particular manufacturer.

Searching for Products by Title

What if you wanted to find products according to a particular keyword found in the product title? To
do so, you'll need to identify the product category, and then specify the keyword you'd like to use as
the basisfor searching within that category. The following example demonstrates how to search the
Vi deoGarres (note the lack of spaces) category for any product having the keyword Hal o in itstitle;

$amazon =
new Zend_Servi ce_Amazon($amazonPubl i cKey, $amazonCountry, $amazonPrivateKey);

$i tens = $anmzon- >i t enBear ch(array(' Searchl ndex' => 'Vi deoGanes',
' ResponseG oup' => ' Medium, 'Keywords' => 'Halo'));

foreach($itens as $item {
echo "{$item>Title}\n";

}

At the time of this writing (the Amazon.com catalog is of course subject to change at any time),
executing this code produced the following output:

Hal o Reach

Hal o: Conbat Evol ved

Hal o 3: ODST

Hal o, Books 1-3 (The Flood; First Strike; The Fall of Reach)
Hal o 3

Hal o 2

Hal o: Conbat Evol ved

Hal o Wars: PlatinumHits

Hal o Reach - Legendary Edition

Hal o 2

It'sworth pointing out that the ten products found in the listing aren't all video games, as the defined
category might lead you to believe. For instance, the product Hal o, Books 1- 3 refersto abox set

Easy PHP Websites with the Zend Framework 189

of official novels associated with the Halo video game series. Why these sorts of inconsistencies
occur isn't apparent, although one would presume it has to do with making the product more easily
findable on the Amazon.com website and through other outlets.

Incidentally, Vi deoGanes is just one of more than 40 categories at your disposal. Try doing
searches using categories such as Musi ¢, Di gital Misi ¢, Wat ches, SportingGoods, Photo, and
Qut door Li vi ng for some idea of what's availabl el

Executing a Blended Search

If you were creating a website dedicated to the Halo video game series, chances are you'd want
to list much more than just the games! After al, there are Halo-specific books, soundtracks, toys,
action figures, and even an animated series. But not all of these items are necessarily categorized
within vi deoGanes, so how can you be sure to capture them all? Amazon offers a special "catch-
all" category called Bl ended which will result in a search being conducted within all of the available
categories:

$i tens = $anmmzon- >i t enBear ch(array(' Sear chl ndex' => 'Bl ended',

' ResponseG oup’ => 'Medium, 'Keywords' => 'Halo'));

Performing the search anew turns up almost 50 items with Halo in the title, the vast mgjority of
which are clearly related to the popular video game brand.

Executing Zend Framework Applications From the Command
Line

In order to calculate trends such as price fluctuations or sales popularity (viathe Amazon.com sales
rank), you'll need to regularly retrieve and record thisinformation. Y ou already learned how to use
the Zend_Service_Amazon component to retrieve this information, but when doing the mass price
and salesrank updates using a standard action won't do for two reasons. First, asyour game database
continues to grow, the time required to retrieve these values for each game will logically increase,
meaning you run the risk of surpassing PHP's maximum execution time setting (defined by the
max_execut i on_ti me directive). While you could certainly change this setting, the consequences of
the script still managing to surpass this limit due to an unexpectedly slow network connection or
other issue before al of the updates are complete are just too severe to contempl ate.

The second reason to avoid performing this sort of update via a traditional action is because you
certainly don't want somebody from the outside either accidentally or maliciously accessing this
action. While you could password-protect the action, are you realistically going to take the time to

Easy PHP Websites with the Zend Framework 190

supply credentials each time you want to access the action in order to initiate the update? Certainly,
forgetting the password isn't going to help, and it's only a matter of time before you stop doing the
updates altogether.

One easy workaround involves writing a standal one script which is executed using PHP's command-
line interface (CLI). This eliminates the issues surrounding the maximum execution time setting
since this setting isn't taken into account when using the CLI. Additionally, provided proper file
permissions are applied you won't run the risk of another user running the script. However, you'll
need to deal with the hassle of finding and using a third-party Amazon API library, not to mention
violate the DRY principle by maintaining a separate set of Amazon APl and database access
credentials. Or will you?

Believe it or not, it's possible to create a script which plugs directly into your Zend Framework
application! This script can take advantage of your application.ini file, al of the Zend
Framework's components, and any other resources you've made available to the application. This
approach gives you the best of both worlds: a script which can securely execute on arigorous basis
(using a task scheduler such as cron) using the very same configuration data and other resources
made available to your web application.

Just asisthe case with the web-based portion of your application, you'll need to bootstrap the Zend
Framework resources to the CLI script. You'll see that this script looks suspiciously like the front
controller (/ publ i ¢/ i ndex. php. Create anew file named cl i . php and place it within your publ i ¢
directory, adding the following contents:

<?php

def i ned(' APPLI CATI ON_PATH)
|| define(' APPLI CATI ON_PATH
real path(dirname(__FILE) . '/../application'));

/] Define application environnment
def i ned(' APPLI CATI ON_ENV')
|| define(' APPLI CATI ON_ENV' ,
(get env(' APPLI CATI ON_ENV') ? getenv(' APPLI CATI ON_ENV')
: 'devel opnent'));

requi re_once ' Zend/ Appl i cati on. php'

$appl i cati on = new Zend_Appl i cati on(
APPL| CATI ON_ENV,
APPLI CATI ON_PATH . '/configs/application.ini

B

$appl i cati on->boot strap();

Easy PHP Websites with the Zend Framework 191

Asyou can see, this script accomplishes many of the same goals set forth within the front controller,
beginning with defining the application path and application environment. Next we'll instantiate the
Zend Application class, passing the environment and location of theappl i cati on. i ni . Finaly, the
boot st rap() method iscall, which loads all of the application resources.

With the CLI-specific bootstrapper in place, you can go about creating scripts which use your
application configuration filesand other resources. For instance, | usethefollowing script/ scri pt s/
updat e_pri ces. php) to retrieve the latest pricesfor all of the video gamesfound in the ganes table:

01 <?php

02

03 include "../public/cli.php";

04

05 // Retrieve the database connection handl e

06 $db = $appl i cati on->get Boot strap()->get Resource(' db");
07

08 // Retrieve the Amazon web service configuration data
09 $ammzonPubl i cKey = Zend_Registry::get('config")

10 - >amazon- >pr oduct _adverti si ng- >publ i c- >key;
11 $amazonPrivat eKey = Zend_Regi stry::get('config')
12 - >amazon- >product _adverti si ng- >pri vat e- >key;

13 $amazonCountry = Zend_Regi stry::get('config')->amazon->country;
14

15 // Connect to the Amazon Web service

16 $amazon = new Zend_Servi ce_Amazon($amazonPubl i cKey,

17 $amazonCountry, $anazonPri vat eKey);

18

19 // Retrieve all of the games stored in the GaneNomad dat abase
20 $ganes = $db->fetchAl | (' SELECT id, asin, nanme FROM ganes ORDER BY id');
21

22 /] lterate over each ganme, updating its price

23 foreach ($ganes AS $gane)

24 {

25

26 try {

27

28 $i tem = $amazon- >i t enLookup($gane[' asin'],

29 array(' ResponseG oup' => 'Medium));

30

31 if (! is_null(S$item) {

32

33 if (isset($item>FornmattedPrice))

34 {

35 $price = $item >FornattedPrice;

36 } else {

37 $price = '$0.00';

38 }

Easy PHP Websites with the Zend Framework 192

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

$updat e = $db->query(" UPDATE ganes SET price = :price WHERE id = :id",
array('price' => $price, 'id => $gane['id']));
} else {
$updat e = $db->quer y(" UPDATE ganes SET price = :price WHERE id = :id",
array('price' => "'$0.00', 'id => $gane['id']));
}
} catch(Exception $e) {
echo "Could not find {$gane['asin']} in Arazon dat abase\r\n";
}
}
2>

Let'sreview the code:

Line 03 integratesthe bootstrapper into the script, making all of the application resourcesavailable
for use. Incidentally, | happen to place my CLI scripts in the project's root directory within a
directory named scri pt s, thus the use of this particular relative path.

Line 06 retrieves a handle to the database connection using this little known Zend Framework
feature (which I incidentally introduced in Chapter 6). We'll use this handle throughout the script
to execute queries against the GameNomad database.

Lines08-13 retrieve the Product Advertising API public and private keys, and the country setting.

Line 16-17 instantiate the Zend Service Amazon class, passing in the aforementioned
configuration data.

Line 20 usesthe Zend_Db f et chAl | () method to retrieve alist of al games found in the gares
table.

Lines 23-54 iterate over the list of retrieved games, using each ASIN to query the Amazon
web service and retrieve the latest price. Because the Amazon product database is occasionally
inconsistent, you need to carefully check the value before inserting it into the database, which
explains why in this example | am both ensuring the video game still exists in the database and
that the priceis correctly set.

Easy PHP Websites with the Zend Framework 193

The ability to create CLI scripts which execute in this fashion is truly useful, negating the need to
depend upon additional third-party libraries and redundantly manage configuration data. Be sure to
check out thescri pt s directory in the GameNomad code download for several examples which are
regularly executed in order to keep the GameNomad data current.

Integrating the Google Maps API

Although web-based mapping services such as MapQuest (http://www.mapquest.com/) have been
around for years, it wasn't until Google's release of its namesake mapping APl (Application
Programming Interface) that we began the love affair with location-based websites. This API
provides you with not only the ability to integrate Google Maps into your website, but also
to build completely new services built around Google's mapping technology. Google Maps-
driven websites such as http://www.walkjogrun.net/, http://www.housingmaps.com/, and http://
www.everyblock.com/ al offer glimpses into what's possible using this API and a healthy dose of
imagination.

Although the Zend Framework has long bundled a component named Zend_Gdata which provides
accessto several Google services, including Y ouTube, Google Spreadsheets, and Google Calendar,
at thetime of thiswriting acomponent capable of interacting with the Google Maps APl was till not
available. However, it's nonetheless possible to create powerful mapping solutions using the Zend
Framework in conjunction with the Google Maps API and the jQuery JavaScript framework's Ajax
functionality. In this section I'll show you how this is accomplished. If you're new to the Google
Maps API take a moment to carefully read the primer which follows, otherwise feel free to skip
ahead to the section "Passing Data to the Google Maps API".

Introducing the Google Maps API

The 2005 release of the Google Maps API signaled a significant turning point in the Web's
evolution, with a powerful new breed of applications known as location-based services emerging
soon thereafter. This freely available API, which gives developers access to Google's massive
spatial database and an array of features which developers can use to display maps within
a website, plot markers, perform route calculations, and perform other tasks which were
previously unimaginable. While competing mapping solutions exist, notably the Bing Maps
(http://www.bing.com/devel opers) and Y ahoo! Maps (http://devel oper.yahoo.com/maps/) APIs, the
Google Maps APl seemsto have struck a chord with developersand is at the time of thiswriting the
de facto mapping solution within the various programming communities.

In May, 2010 Google announced a major update to the API, commonly referred to as V3. V3
represents a significant evolutionary leap forward for the project, notably due to the streamlined

Easy PHP Websites with the Zend Framework 194

syntax which makes map creation and manipulation even easier than was possible using previous
releases. Additionally V3 introduces a number of powerful new features including the ability to
integrate draggabl e directions and the popular Street View feature.

However, one of the most welcome features new to V3 isthe elimination of the previously required
domain-specific APl key. Google had previously required developers to register for a key which
was tied to a specific domain address. While the registration process only took a moment, managing
multiple domain keys was somewhat of a hassle and so removal of this requirement was welcome
news.

Creating Your First Map
V3 offersavastly streamlined APl syntax, allowing you to create and manipulate amap using afew

short lines of code. L et's begin with asimple example which centersamap over the Columbus, Ohio
region. Thismap is presented in Figure 10.2.

{51 .. L T
[Map | Saeme | Hybd | Torran |
ﬂ? & £
i L
Ak G185
_ Uniemisity
‘H;Ij Didricl ¥
Lppar o Horth
Arlingban £ Cenira
:"M # Idio-Grogan
here Wairbde Clifd Harrken
Srandview Wil -':, b
51% H=ights o "Lﬂ'_
Fy
T,
H’rﬁph} e it Dol
‘w ; Coluin b I:E..npd.ﬁ-'.
Walleeien Columbus
i ="
e st {49) 70, st
f E_L'nl i Ao
Google Mpp duis COR1Bangh - o LS

Figure 10.2. Centering a Google map over Columbus, Ohio

Easy PHP Websites with the Zend Framework 195

The code used to create this map is presented next:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<htm >
<head>
<script type="text/javascript"
src="http:// maps. googl e. com maps/ api / j s?sensor =f al se" >
</script>
<style type="text/css">
#map { border: 1px solid black; w dth: 400px; height: 300px; }
</styl e>
<script type="text/javascript">
function initialize() {
var |atlng = new googl e. maps. Lat Lng(39. 984577, -83.018692)
var options = {
zoom 12
center: |atlng
mapTypel d: googl e. maps. MapTypel d. ROADMVAP
var map = new googl e. maps. Map(docunent . get El enent Byl d(" map"), options)
}
</ script>
</ head>
<body onload="initialize()">
<di v id="map"></div>
</ body>
</htm >

Let'sreview this example's key lines:

Lines 03-05 incorporate the Google Maps API into the web page. The API is JavaScript-based,
meaning you won't have to formally connect to the service like you did with the Amazon Product
Advertising API. Instead, you just add a reference to the JavaScript file, and use the JavaScript
methods and other syntax just as you would any other. Incidentally, the sensor parameter is used
totell Googlewhether asensor isbeing used to derive the user's coordinates. Why Googlerequires
thisparameter isamystery, sinceonewould presumeit could ssmply default tof al se. Nonetheless
be sure to include it as Google explicitly states it to be a requirement in the documentation.

Line 07 definesasimple CSS stylefor the DIV which will hold the map contents. The dimensions
defined here will determine the size of the map viewport. If you wereto omit dimensions, the map
will consume the entire browser viewport.

Lines 10-18 define a function named initialize() which will execute once the page has
completely loaded (as specified by the onl oad() function call online 21). Y ou want to make sure
the page has completely loaded before attempting to render a map, because as you'll soon see

Easy PHP Websites with the Zend Framework 196

the API requires atarget DIV in order to render the map. It's possible that the JavaScript could
execute before the DIV has been loaded into the browser, causing an error to occur. Keep thisin
mind when creating your own maps, as this oversight is a common cause for confusion!

 Linell createsanew object of typeLat Lng, whichrepresentsapair of coordinates. Inthisexample
I'm passing in a set of coordinates which | know are situated atop the city of Columbus. In alater
section I'll show you how to derive these coordinates given an address.

» Lines12-16 define an object literal which contains several map-specific settings such asthe zoom
level, center point (defined by the previously created Lat Lng object), and the map type, which can
be set to ROADMAP, SATELLI TE, HYBRI D, Or TERRAI N. The ROADMAP type is the default setting (the
same used when you go to http://maps.google.com). Try experimenting with each to get a fed
for the unique environment each has to offer. Other settings exist, however the three used in this
example are enough to create a basic map.

» Line 17 isresponsible for creating the map based on the provided options, and inserting the map
contentsinto the DIV identified by the map ID. Y ou're free to name the DIV anything you please,
however make sure the name matches that passed to the JavaScript get El enent Byl d() method
cal.

 Finally, line 22 defines the DIV where the map will be rendered. This is obviously a simple
example; you can insert the DIV anywhere you please within the surrounding page contents. In
fact, it's even possible to render multiple maps on the same page using multiple instances of the
Map object.

Plotting Markers

The map presented in the previous example is interesting, however it provides the user little more
than a bird's eye view of the city. Staying with the video gaming theme of the book, let's plot afew
markers representing the locations of my favorite GameStop (http://www.gamestop.com) outlets, as
depicted in Figure 10.3.

Easy PHP Websites with the Zend Framework 197

Ejrc,u [Map | Satelle | Hyprid | Teran |
», Dublin="%47
+ | Wiarthinglon Fhibei Fo b= Ay
1
w &
Hilligrd E-E‘S-tﬂl'i
ML % R
Aringien Blacklck
o, FT0,
i
i C-:llumt!u!. Biexl
ake Darhy Wilage w <L, Whilehall Reynaldsh
W=t —]
e ffarsan LZT0) w
D aow9y Elaokick
i rg el Estancs
v i Growve City = Picker
o, ot S22,
@‘}r_ﬂ < Map daba T2010 Sooghk - I¢

Figure 10.3. Plotting area GameStop locations

In order to stay on topic I'll presume we've already obtained the coordinates for each of the three
locations placed on the map. In the next example I'll show you how to retrieve these coordinates so
in the meantime let's focus specifically on the syntax used to plot the markers. For the sake of space
I'll demonstrate plotting a single marker, however except for varying coordinates, marker titles, and
variable names the syntax isidentical:

var map = new googl e. maps. Map(docunent . get El enent Byl d(" nap"), options);

var canpus = new googl e. maps. Mar ker ({
posi ti on: new googl e. maps. Lat Lng(39. 9952654, -83.0071351),
mep: map,
title: "GaneStop Canpus"

b

Summarizing this snippet, to plot a marker you'll create a new object of type Mar ker and pass into
it an object literal consisting of the position, the map object, and the marker title (which displays
when the user mouses over the marker).

Easy PHP Websites with the Zend Framework 198

Using the Geocoder

All of the examples provided thus far are based on the unlikely presumption that you already know
the location coordinates. Because this is almost certainly never going to be the case, you'll need
a solution for converting, or geocoding the location address to its corresponding latitudinal and
longitudinal pair. The API is bundled with a geocoder which quite capably handles this task.

The API geocoder isbundled into aclass named geocoder , and you'll invokeitsgeocoder () method
to convert an address into its constituent coordinates, with the results passed to an anonymous
function as demonstrated here:

o1 ...

02 map = new googl e. maps. Map(docunent . get El ement Byl d(" map"), options);
03

04 var address = "1611 N Hi gh St, Col unmbus Chi0";

05 var title = "Canmpus";

06

07 geocoder.geocode({'address': address}, function(results, status) {
08

09 if (status == googl e. maps. Geocoder St at us. OK) {

10

11 var marker = new googl e. maps. Mar ker ({
12 position: results[0].geonetry.|ocation,
13 map: map,

14 title: title

15)

16

17 } else {

18 return FALSE;

19 }

20

21 1)

22 ...

If you're not familiar with JavaScript's anonymous function syntax, this snippet can look a bit
confusing. However if you carefully review this code you'll see that all we're doing is passing
in a nameless function and body along as the geocode() method's second input parameter. This
anonymous function accepts two parameters, r esul t s, which contains the geocoded coordinates if
the attempt was successful, and st at us, which is useful for determining whether the attempt was
successful. If successful, asdefined by thest at us valuegoogl e. maps. Geocoder St at us. O, thenthe
resul t s object can be retrieve the coordinatesr esul t s[0] . geonet ry. | ocati on iSaLat Lng object
containing the coordinates.

Easy PHP Websites with the Zend Framework 199

Of course, you shouldn't be repeatedly geocoding an address and plotting its coordinates. Instead,
you should geocode the address once and save the coordinates to the database. I'll show you how
thisis done next.

Saving Geocoded Addresses

In my opinion, one of GameNomad's most interesting features is the ability to connect registered
users who reside within the same geographical region. This is possible because coordinates
corresponding to every user's zip code are associated with the user, and an algorithm is employed
which determines which other users reside within a specified radius from the user's home zip code.
These coordinates are stored in the account s table's | atitude and | ongi t ude columns, each of
which is defined using the doubl e(10, 6) data type. The geocoding occurs within two areas of the
GameNomad website, namely at the time of registration / account / r egi st er), and when the user
updates his account profile/ account / profil e).

The php-google-map-api library (http://code.google.com/p/php-google-map-api/) provides a
particularly easy way to convert addresses (including zip codes) into their corresponding coordinates.
The php-google-map-api library offers an object-oriented server-side solution for integrating Google
Mapsinto your website, allowing you to create and integrate maps using PHP rather than JavaScript.
Although the php-google-map-api library is a very capable solution, | prefer to use the native
JavaScript-based APl however the php-google-map-api's geocoding feature is too convenient to
ignore, allowing you to pass in a zip code and retrieve the geocoded coordinates in return, as
demonstrated here:

$map = new Googl eMapAPI () ;
$coordi nates = $map- >get GeoCode($t hi s- >_request - >get Post (' zi p_code'));

$l atitude = $coordinates['lat'];
$l ongi tude = $coordinates['lon'];

The php-google-map-api library is available for download from the aforementioned website, and
consists of just two PHP files, Googl eMap. php and JSM n. php. The former file contains the
Googl eMapAPI class which encapsulates the PHP-based interface to the Google Maps API. The
latter file contains a PHP implementation of Douglas Crockford's JavaScript minifier (http://
www.crockford.com/javascript/jsmin.html). If you're planning on using the library for more than
geocoding then | suggest also downloading JSM n. php asit will boost performance by compressing
the JavaScript generated by Googl eMap. php. Moving forward I'll presume you've only downloaded
Googl eMap. php for the purposes of this exercise.

Easy PHP Websites with the Zend Framework 200

Place Googl eMap. php within your project's! i br ary directory or any other directory made available
viaPHP'si ncl ude_pat h directive. Next you'll usether equi re_once statement to include thefile at
the top of any controller which will use the geocoding feature:

requi re_once ' Googl eMap. php';

All that's |eft to do isinvoke the Googl eMapAPI class and call the get GeoCode() method to convert
an address to its associated coordinates:

$map = new Googl eMapAPI () ;
$coor di nates = $nmap- >get CeoCode(' 43201');

$l ati tude = $coordinates['lat'];
$l ongi t ude = $coordi nates['lon'];

printf("Latitude is % and longitude is %", $latitude, $longitude);

Executing this snippet produces the following output:

Latitude is 39.994879 and | ongitude is -82.998741

One great aspect of Googl€e's geocoding featureisits ability to geocode addresses of varying degrees
of specificity. It can also geocode state names (Ohio), cities and states (Columbus, Ohio), specific
street names within an city (High Street, Columbus, Ohio), and specific street addresses (1611 N
High Street, Columbus, Ohio 43201), among other address variations.

Finding Users within a Specified Radius

Because every user's zip code coordinates are stored in the database, it's possible to create all sorts
of interesting location-based features, such as giving users the ability to review alist of al video
games for sale within a certain radius (5, 10, or 15 miles away from the user's location as defined
by his coordinates, for instance). Believe it or not, implementing such a feature is pretty easy,
accomplished by implementing a SQL-based version of the Haversine formula. Although staring at
theformulafor too long may bring about unpleasant memories of high school geometry, the only real
implementational challenge is knowing the insertion order of the variables passed into the formula.

Therather long query presented below isadightly simplified version of the SQL implementation of
the Haversineformulaused on the GameNomad website. | won't pretend that | evenreally understand
the mathematics behind the formula (nor care to understand it, for that matter), other than to say that
it employs spherical trigonometry to cal cul ate the distance between two points on the globe (or inthe
case of the SQL query, the distance between auser'slocation and all of the other usersin the system).

Easy PHP Websites with the Zend Framework 201

Speaking specifically about what this query will retrieve, all games having a status of $st at us and
associated with users residing within $di st ance miles of the location identified by the coordinates
$l ati t ude and $l ongi t ude

SELECT a. zi p_code, a.latitude, a.longitude, count(g.id) as gane_count,
(3959 * acos(cos(radians($this->latitude))
* cos(radians(a.latitude)) *
cos(radians(a.longitude) - radi ans($l ongitude)) +
sin(radians($l atitude)) *
sin(radians(a.latitude)))) AS distance
FROM accounts a
LEFT JO N ganes_t o_accounts ga
ON a.id = ga.account_id
LEFT JON ganes g ON ga.gane_id = g.id
WHERE ga. status_id = $status
GROUP BY a. zi p_code HAVI NG di st ance < $di stance
ORDER BY di st ance

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

* Why isit awiseideato use PHP's CLI in conjunction with scripts which could conceivably run
for asignificant period of time?

» What two significant improvements does the Google Maps API offer over its predecessor?

Chapter 11. Unit Testing Your
Project

There are few tasks more exhausting than manually testing a website, haphazardly navigating from
one link to the next and repeatedly entering countless permutations of valid and invalid information
into web forms. Even thinking about these tasks is enough to wear me out. Y et leaving to chance a
potentially broken user registration or worse, product purchase form is arecipe for disaster.

And so goes on the clicking, the navigating, the form filling, the checking, the double checking, the
fixing, the triple checking, ad infinitum. Doesn't it seem ironic that programmers find themselves
mired in such atedious and error-prone process? Thankfully, members of our particular community
tend to have little patience for inefficiency and often set out to improveinefficient processesthrough
automation.

In fact, a great deal of work has been put into automating the software testing process, and in fact
there are dozens of fantastic open source tools at your disposal which will not only dramatically
reduce the time and effort you'll otherwise spend laboriously surfing your website, but also
considerably reduce the amount of worry and stress you incur due to wondering whether you
overlooked something!

In this chapter I'll introduce you to a popular PHP testing tool called PHPUnit (http://
www.phpunit.de/) which integrates very well with the Zend Framework via the Zend Test
component. Several of the preceding chapters concluded with sections titled "Testing Y our Work™
whichincluded several PHPUnit/Zend Test-based testsintended to show you how to test your pages,
page elements, forms, Doctrine entities, and other crucial components. So rather than repetitively
focus on how to carry out these sorts of tests, I'll instead focus on configuration-related matters,
showing you how to put all of the pieces in place in order to begin taking advantage of the tests
presented in the earlier chapters.

Introducing Unit Testing

Unit testing is a software testing strategy which involves verifying that a specific portion, or unit of
code, is working as expected. For instance, , you might want to write unit tests which answer any
number of questions, including:

 Doesthe contact form properly validate user input?

Easy PHP Websites with the Zend Framework 203

* Isvalid user registration data properly saved to the database?
» Arethefinders defined in my custom entity repository retrieving the desired data?
» Doesaparticular page element exist?

Recognizing the importance of providing with an efficient way to integrate unit testing into the web
development process, the Zend Framework developers added a component called Zend_Test early
on in the project’s history. Zend_Test integrates with the popular PHPUnit (http://www.phpunit.de)
unit testing framework, providing an effective and convenient solution for testing your Zend
Framework applications. In this section I'll show you how to install PHPUnit, and configure your
Zend Framework application so you can begin writing and executing unit tests which validate the
proper functioning of your website.

Readying Your Website for Unit Testing

The Zend Framework developers place agreat emphasis on encouraging unit testing, going so far as
to automatically create aspecial directory namedt est s within theproject directory whichisintended
to house for your testing environment, and even generating test skeletons for each newly created
controller. Yet afew configuration steps remain before you can begin writing and executing your
unit tests. Thankfully, these steps are fairly straightforward, and in this section we'll work through
each in order to configure a proper testing environment.

Installing PHPUnit

PHPUniIt is available as a PEAR package, requiring you to only tell your PEAR package manager
where the PHPUnIt package resides by discovering its various PEAR channels, and then installing
the package:

%pear channel -di scover pear.phpunit.de

%pear channel -di scover conponents. ez.no

%pear channel -di scover pear.synfony-project.com
% pear install phpunit/PHPUnI t

Once installed, you're ready to begin using PHPUnit! Confirm it's properly installed by opening a
terminal window and viewing PHPUnit's version information:

% phpunit --version
PHPUni t 3.5.3 by Sebasti an Ber gmann.

Next we'll configure your Zend Framework application so it can begin using PHPUnit for testing
purposes.

Easy PHP Websites with the Zend Framework 204

Configuring PHPUnit

To begin, create a configuration file named phpuni t . xm which serves as PHPUnit's configuration
file, and placeit in your project'st est s directory. An empty phpuni t. xni file already existsin this
directory, so al you need to do is add the necessary configuration directives. A very simple (but
operational) phpuni t. xm filesis presented here, followed by an overview of the key lines:

01 <phpunit bootstrap="./application/bootstrap.php" col ors="true">
02 <t est sui t e nanme="ganmenonad" >

03 <directory>./</directory>

04 </testsuite>

05 </ phpunit>

Let'sreview thefile;

» Line 01 points PHPUnit to a bootstrap file, which will execute before any tests are run. I'll talk
more about t est s/ appl i cati on/ boot st rap. php in @ moment. Setting the col or s attribute to
true will cause PHPUnit to use color-based cues to indicate whether the tests had passed, with
green indicating success and red indicating failure.

* Lines 02-04 tells PHPUniIt to recursively scan the current directory, finding files ending in
Test . php.

Next, we'll create the bootstrap file referenced on line 01 of the phpuni t . xm file.

Creating the Test Bootstrap

The test bootstrap file (tests/application/bootstrap. php) referenced on line 01 of the
phpuni t.xni file is responsible for initidizing any resources which will subsequently be
used when running the tests. In the following example bootstrap file we configure a path-
related constant (APPLI CATI ON_PATH), and load two helper classes (Cont rol | er Test Case. php and
Model Test Case. php) which welll use to streamline some of the code used in controller- and
model-related tests, respectively (I'll talk more about these helper classes in a moment). Like the
phpuni t. xn , ablank boot st rap. php file was created when your project was generated, so you'll
just need to add the necessary code:

<?php
define(' BASE PATH , real path(dirnane(__FILE) . "/../[..]1"));

define(' APPLI CATI ON_PATH , BASE PATH . '/application');

requi re_once 'controllers/ControllerTest Case. php';
requi re_once ' nodel s/ Model Test Case. php';

Easy PHP Websites with the Zend Framework 205

Testing Your Controllers

When you use the ZF CLI to generate a new controller, an empty test case will automatically be
created and placed in the t est s/ appl i cation/ control | ers directory. For instance if you create
a new controller named About, notice how the output also indicates that a controller test file
named About Cont r ol | er Test . php hasbeen created and added to thedirectory t est s/ appl i cat i on/
control lers/:

%zf create controller About

Creating a controller at

[var / ww/ dev. ganenoned. conl appl i cation/control lers/. ..
Creating an index action nethod in controller About
Creating a view script for the index action nethod at

[var / ww/ dev. ganenoned. con appl i cati on. ../ about/i ndex. pht m
Creating a controller test file at

/var / ww/ dev. ganenoned. conl t est s/ . . . About Control | er Test . php
Updating project profile '/var/.../.zfproject.xm"

Let'stake alook at the About Cont rol | er Test . php code:

<?php
require_once ' PHPUni t/ Fr amewor k/ Test Case. php' ;

cl ass About Control | er Test extends PHPUnit_Framewor k_Test Case

{
public function setUp()
{ /* Setup Routine */
}
public function tearDown()
{ /* Tear Down Routine */
}

Each generated controller test is organized within a class which extends the Zend Framework's
Test Case class. Within the class, you'll find two empty methods hamed set Up() and t ear Down() .
These methods are special to PHPUnit in that PHPUNit will execute the set Up() method prior to
executing any tests found in the class (I'll talk more about this in a moment), and will execute the
tear Down() method following completion of the tests. You'll use set Up() to set the application

Easy PHP Websites with the Zend Framework 206

environment up so that the tests will use to test the code, and t ear Down() to return the environment
back toits origina state.

When testing Zend Framework-driven applications, the primary purpose of theset Up() methodisto
bootstrap your application environment so the tests can interact with the application code, it'sagood
ideato DRY up the code and create a parent test case class which readies the environment for you.
You'll modify the generated test controller classes to extend this class, which will in turn subclass
Zend_Test _PHPUni t _Control | er Test Case. Here's what a basic parent test controller class looks
like, which | call Control I er Test Case. php (thisfile should be placed in thet est s/ appl i cat i on/
control | ers directory):

<?php
requi re_once ' Zend/ Appl i cati on. php';
requi re_once ' Zend/ Test/ PHPUni t/ Control | er Test Case. php';

abstract class Controll er Test Case
ext ends Zend_Test PHPUnit_Control | er Test Case
{

public function setUp()
{

$t hi s- >boot strap = new Zend_Appl i cati on(
"testing',
APPLI CATI ON_PATH . '/configs/application.ini'
Ik

parent::set Up();

}

public function tearDown()

{

parent: :tear Down();

}

Because we're keeping matters simple, this helper class' set Up() method is only responsible for
creating a zend_Appl i cati on instance, setting APPLI CATI ON_ENV to testi ng and identifying the
location of theappl i cati on.ini file, and concludes by executing the parent class set Up() method.
Thet ear Down() method just calls the parent class t ear Down() method.

Easy PHP Websites with the Zend Framework 207

Savethisfileas Control | er Test Case. php t0 your / t est s/ appl i cati on/ control | ers/ directory,
and modify the About Cont rol | er Test . php file so it extends this class. Also, add a simple test so
we can make sure everything is working properly:

<?php
cl ass About Control | er Test extends Control | er Test Case

public function testDoesAbout| ndexPageExi st ()

{
$t hi s->di spatch('/");
$t hi s->assert Control | er (' about');
$t hi s- >assert Action('index"');

}

}

Save About Control | er Test . php, open a terminal window, and execute the following command
from within your project'st est s directory:

$ phpuni t
PHPUnit 3.5.3 by Sebasti an Ber gmann.

Time: 0 seconds, Menory: 8.75M

OK (1 tests, 2 assertions)

Presuming you see the same output as that shown above, congratulations you've successfully
integrated PHPUnit into your Zend Framework application!

Executing a Single Controller Test Suite

Sometimes you'll want to focus on testing a specific controller and would rather not wait for all
of your tests to execute. To test just one controller, pass the controller path and test file name to
phpuni t , as demonstrated here:

% phpuni t application/controllers/Account ControllerTest

Testing Your Models

While you'll want to test your models by way of your controller actions, it's also agood ideato test
your modelsinisolation. The configuration process really isn't much different from that used to test

Easy PHP Websites with the Zend Framework 208

the controllers, the only real difference being that in order to test the Doctrine entities we need to
obtain accessto theenti t yManager resource. Create a helper class named Model Test Case. php and
placeitinthetest s/ appl i cati on/ nodel s directory:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

<?php
cl ass Model Test Case ext ends PHPUni t _Franmewor k_Test Case
{
protected $em
public function setUp()
{
$appl i cati on = new Zend_Appl i cati on(
"testing',
APPLI CATI ON_PATH . '/configs/application.ini'
Ik
$boot strap = $appl i cati on->boot strap()->get Boot strap();
$t hi s- >em = $boot st rap- >get Resour ce(' enti tyManager');
parent::set Up();
}
public function tearDown()
{
parent: :tear Down();
}
}

Let's review the code:

Line 06 defines a protected attribute named $emwhich will store an instance of the entity manager
(see Chapter 7 for more about the role of Doctrine's entity manager). This attribute will be used
within the tests to interact with the Doctrine entities.

Lines 11-13 creates a zend_Appl i cati on instance, setting APPLI CATI ON_ENV tO testing and
identifying the location of the appl i cation.ini file.

Line 16 retrieves an instance of the application bootstrap, whichisin turn used to accessthe entity
manager resource (Line 18).

Easy PHP Websites with the Zend Framework 209

Savethisfile asMdel Test Case. php to your / t est s/ appl i cat i on/ nodel s/ directory, and create a
test classnamed Account Ent i t yTest . php, remembering to extend it with the Model Test Case class.
Finally, add a simple test so we can make sure everything is working properly:

<?php
class About EntityTest extends Mdel Test Case
{
public function testCanSaveAndRetrieveUser ()
{
$account = new \ Entities\Account;
$account - >set User name(' wj gi | nore-test');
$account - >set Emai | (' exanpl e@y gi | nore. con) ;
$account - >set Passwor d(' j ason');
$account - >set Zi p(' 43201');
$account - >set Confi rmed(1);
$t hi s- >em >per si st ($account) ;
$t hi s->em >f | ush();
$account = $this->em >get Repository(' Entities\Account")
->fi ndOneByUsernanme('w gi |l nore-test');
$t hi s- >assert Equal s(' W gi | nore-test',
$account - >get User nanme()) ;
}
}

Creating Test Reports

Viewing the phpunit command's terminal-based output is certainly useful, however quite a few
other convenient and useful test reporting methods are also available. One of the simplest involves
creating an HTML-based report (see Figure 11.1) which clearly displays passing and failing tests.
The report is organized according to the test class, with failing tests clearly crossed out.

Easy PHP Websites with the Zend Framework 210

AccountModel

* Can instantiate account
e Can save and retrieve user

IndexController

* Does home page exist

Figure 11.1. Viewing a web-based test report

To enable web-based test reports, modify your phpuni t. xm file, adding the | oggi ng element as
presented below. You'll also need to create the directory where you would like to store the HTML
report (in the case of the below example you would create the directory t est s/ 1 og/):

<prograniisting>
<! [CDATA[
<phpuni t boot strap="./application/bootstrap. php" col ors="true">
<t est sui t e nane="ganmenonad" >
<directory>./</directory>
</testsuite>
<l oggi ng>
<l og type="testdox-htm"
target ="/var/ww/ dev. ganmenonad. com' test s/ | og/testdox. htm " />
</l oggi ng>
</ phpuni t >
</ program i sting>

Code Coverage

PHPUnNIt can also generate sophisticated code coverage reports which can prove extremely useful
for determining just how much of your project has been sufficiently tested. These web-based reports
allow you to drill down into your project files and visually determine specifically which lines,
methods, actions, and attributes have been "touched" by atest. For instance Figure 11.2 presents an
exampl e code coverage report for an Doctrine entity named Account .

Easy PHP Websites with the Zend Framework 211

Current file: /var/www/z2d2/application/models/Entities/Account.php
Legend: executed [notexecuted’ dead code

——— [000%) 0/ m—— | 3750 [6116] CRiP mmm— | dBiste) iaiary

Account

construct | — 1
addGane (Game $game I _- 2
getGanes | | _- 2
oy om0
getrdl) [o00% | 01| 2
getUsernane | — 1
setUsername ($username | —— 1
getEnail() 7 000% 0/1 2
setEnail (Semail 1 100.00% 1/1 1
getPassword () | 000% O0/1 2
setPassword ($password 7 100.00% 1/1 1
getZin0) . [000% 07 2
setzZip($zip 7 100.00% 1/1 1
getCreated | | _- 2
setCreated (§created I _- 2
getlpdated () m— 1[0

Figure 11.2. A Doctrine entity code cover age report

In order to enable PHPUnNit's code coverage generation feature you'll need to install the Xdebug
extension (http://www.xdebug.org/). Installing Xdebug is a very easy process, done by following
the instructions presented here: http://www.xdebug.org/docs/install.

With Xdebug installed, you'll next need to define a | og element of type coverage-htm to your
project's phpuni t. xm file, as demonstrated in the below example. You'll also need to create the
directory where you would like to store the code coverage reports (in the case of the below example
you would create the directory t est s/ | og/ report/):

<phpuni t boot strap="./application/bootstrap. php" col ors="true">

<t estsuite name="ganmenomad" >
<directory>./</directory>
</testsuite>

<filter>
<whi telist>
<directory suffix=".php">../application/</directory>
<excl ude>
<file>../application/bootstrap. php</fil e>
</ excl ude>

Easy PHP Websites with the Zend Framework 212

</whitelist>
</[filter>

<l oggi ng>
<l og type="testdox-htm"
target="tests/log/testdox. htm" />
<l og type="coverage-htm "
target="tests/log/report" charset="UTF-8"
yui ="true" highlight="true"
| owUpper Bound="50"
hi ghLower Bound="280"/ >
</l oggi ng>
</ phpuni t >

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

» Define unit testing and talk about the advantagesit brings to your development process.

* What Zend component and open source PHP project work in conjunction with one another to
bring unit testing to your Zend Framework applications?

» What is the name of the syntactical construct used to validate expected outcomes when doing
unit testing?

» Why are code coverage reports useful ?

Chapter 12. Deploying Your
Website with Capistrano

| seriously doubt there is a developer on the planet who has not experienced at least one moment
of sheer panic dueto at least one botched website deployment in their career. Those who admit to
having suffered through troubleshooting asudden and mysteriousissue with their production website
following an update almost always attribute the problem to FTP. Perhaps a configuration file was
mistakenly overwritten, you neglected to transfer all of the modified files, or you forgot to login to
the production server following completion of the file transfer and adjust file permissions.

You might be surprised to learn that under no circumstances should you be using FTP to update
anything but the simplest website. Unfortunately, FTP offers the illusion of efficiency, because
it provides such an incredibly intuitive interface for transferring files from your laptop to your
remote server. However, FTP is slow, transferring all selected files rather than only those which
have been modified since the last update. It is also stupid, capable of only transferring files without
any consideration of platform-specific settings (such as the APPLI CATI ON_ENV setting in your Zend
Framework website's . ht access file). And perhaps worst of al, FTP offers no undo option; once
the files have transferred, it is not possible to revert those changes should you want to return the
production website to its previous state.

Fortunately, an alternative deployment solution exists caled Capistrano (https://github.com/
capistrano/) which resolves all of FTP's issues quite nicely. Not only can you use Capistrano to
securely and efficiently deploy changes to your Zend Framework website, but it's also possible to
rollback your changes should a problem arise. In this chapter I'll show you how to configure your
development environment to use Capistrano, freeing you from ever having to worry again about a
botched website deployment.

Configuring Your Environment

Capistrano is an open source automation tool originally written for and primarily used by the Rails
community (http://rubyonrails.org/). However it is perfectly suitable for use with other languages,
PHP included. But because Capistrano is written in Ruby, you'll need to install Ruby on your
development machine. If you're running OS X or most versions of Linux, then Ruby islikely already
installed. If you're running Windows, the easiest way to install Ruby is via the Ruby Installer for
Windows (http://rubyinstaller.org/).

Easy PHP Websites with the Zend Framework 214

Once installed, you'll use the RubyGems package manager to install Capistrano and another
application called Railsless Deploy which will hide many of the Rails-specific features otherwise
bundled into Capistrano. Although Railsless Deploy is not strictly necessary, installing it will
dramatically streamline the number of Capistrano menu options otherwise presented, all of which
would be uselessto you anyway because they areintended for usein conjunction with Rails projects.

RubyGemsishbundled with Ruby, meaning if you'veinstalled Ruby then RubyGemsisalso available.
Open up aterminal window and execute the following command to install Capistrano:

‘$ geminstall capistrano

Next, install Railsless Deploy using the following command:

‘$ geminstall railsless-depl oy

Once installed you should be able to display alist of available Capistrano commands:

$ cap -T

cap depl oy

cap depl oy: check

cap depl oy: cl eanup

cap depl oy: col d

cap depl oy: pendi ng

cap depl oy: pendi ng: di f f
cap depl oy: rol | back
cap depl oy: rol | back: code
cap depl oy: setup

cap depl oy: sym i nk

cap depl oy: updat e

cap depl oy: updat e_code
cap depl oy: upl oad

cap i nvoke

cap shel

Depl oys your project.

Test depl oynent dependenci es

Clean up old rel eases

Depl oys and starts a “cold' application
Di spl ays the commits since your |ast..
Di splays the “diff' since your |ast..
Rol | s back to a previous version and..
Rol |'s back to the previously depl oyed. .
Prepares one or nore servers for depl...
Updates the symink to the nost recen..
Copi es your project and updates the s..
Copi es your project to the renote ser...
Copy files to the currently depl oyed. .

I nvoke a single command on the renote. .
Begin an interactive Capi strano sessi...

HH O HHH R

Installing a Version Control Solution

Version control is a process so central to successful software development that if you are not
currently using a version control solution such as Git (http://git-scm.com/) or Subversion (http://
subversion.tigris.org/) to manage your projectsthen consider reading thefreely available chapter 1 of
the book "Pro Git" (http://progit.org/book/). In short, version control bringsagreat many advantages
to any project, including the disciplined evolution of your project's source code, changel og tracking
and publication, the ability to easily revert mistakes, and experiment with new features, to name a
few.

Easy PHP Websites with the Zend Framework 215

Further, maintaining aproject under version control solution will greatly streamlinesthe deployment
process because Capistrano will be able to detect and transfer only those files which have changed
sincethelast deployment. Whileit's not strictly necessary for your project to be under version control
in order for Capistrano to perform the deployment, | urge you to do so because like Capistrano,
instituting version control will greatly reduce the possibility of unforeseen gaffesthanksto the ability
to rigorously track and traverse changes to your code.

Capistrano supports quite afew different version control solutions, among them Bazaar, CVS, Git,
Mercurial, and Subversion. If you haven't already settled upon a solution, 1'd like to suggest Git
(http://git-scm.com/), not only because it happens to be the solution | know best and can therefore
answer any questions you happen to have, but also because as of the moment it is easily the most
popular version control solution on the planet. Additionally, Git clients are available for al of the
major platforms, Windows included. Install Git on your development machine by heading over to
http://git-scm.com/download and following the instructions specific to your operating system.

Once installed you can confirm that the command-line client is working properly by executing the
following command:

$ git --version
git version 1.6.3.3

Because Git associates repository changes with the user performing the commit, a useful feature
when working with multiple team members, you'll need to identify yourself and your e-mail address
so Git can attribute your commits accordingly:

$ git config --gl obal user.nane "Jason G | nore"
$ git config --global user.email "w @y gil nore.cont

You'll only need to do this once, as Git will save this information in a configuration file associated
with your system account.

To place your project under version control, enter your project's root directory and execute the
following command:

$ git init
Initialized enpty Gt repository in /var/ww dev. ganenonad. coni . git/

Executing this command will in no way modify your project nor its files, other than to create a
directory called . gi t which will host your repository changes.

Presuming your project directory contains various files and directories, you'll next want to begin
tracking these files using Git. To do so, execute the add command:

Easy PHP Websites with the Zend Framework

216

$ git add .

The period tells Git's add command to recursively add everything found in the directory. You can
confirm which files will be tracked by executing the st at us command. For instance, if you're
tracking a project which was just created using the zf command-linetool, the st at us command will
produce the following outpult:

git status

Changes to

new file:
new file:
new fil e:
new file:
new file:
new file:
new file:
new fil e:
new file:
new fil e:
new file:
new file:
new file:

o HH O H O H O H G HHHH RS

(use "git

On branch master

Initial conmmt

be conmi tted:

rm--cached <file> .." to unstage)
. zf proj ect . xm
appl i cati on/ Boot strap. php

appl i cation/ configs/application.ini
application/controllers/ErrorController.php
application/controllers/IndexController.php
appl i cation/vi ews/scripts/error/error. phtni
appl i cation/vi ews/ scri pts/index/index. phtmni
docs/ README. t xt

public/. htaccess

publ i c/i ndex. php

test s/ application/ boot strap. php
tests/library/bootstrap. php

t est s/ phpuni t . xm

Finally, you'll want to commit these changes. Do so using the conmi t command:

$ git commit

-m"First project comit"

[master (root-commit) 5be0656] First project commt
10 files changed, 303 insertions(+), O deletions(-)

creat e node
creat e node
creat e node
creat e node
creat e node
creat e node
creat e node
creat e node
creat e node
creat e node
creat e node
creat e node

100644 . zf proj ect. xm
100644 applicati on/ Boot strap. php
100644 application/configs/application.ini

100644 application/controllers/ErrorController.php
100644 application/controllers/IndexController.php
100644 application/views/scripts/error/error. phtmn
100644 application/views/scripts/index/index. phtm

100644 docs/ README. t xt

100644 public/. htaccess

100644 public/index. php

100644 tests/application/bootstrap. php
100644 tests/library/ bootstrap. php

Easy PHP Websites with the Zend Framework 217

‘ create node 100644 tests/phpunit.xm

The - moption refersto the commit message which you'll attach to the commit by passing it enclosed
in quotations as demonstrated here. Of course, you'll want these messages to clearly explain the
changes you're committing to the repository, not only for the benefit of others but for yourself when
you later review the commit log, which you can do by executing the | og command:

$ git log

commit 5be06569a9d69214a629e888187e59023985f 122
Aut hor: Jason G lnore <w @\ gil nore. con»

Dat e: Wed Feb 23 18:37:48 2011 -0500

First project commt

Because'll show you how to use Capistrano to only deploy the changes committed to your repository
sincethelast deployment, you'll want to make sure you've committed your changes before beginning
the deployment process, otherwise you'll be left wondering why the production server doesn't reflect
your latest changes! This applies even if you aren't using Git, as the behavior isthe same regardliess
of which version control solution you are using.

This short introduction to Git doesn't even begin to serve as an adequate tutorial, as Git is a vastly
capable version control solution with hundreds of useful features. Although what you've learned so
far will be suffice to follow along with the rest of the chapter, | suggest purchasing a copy of Scott
Chacon's excellent book, "Pro Git", published by Apressin 2009. Y ou can read the book online at
http://progit.org/.

Configuring Public-key Authentication

Thefinal general configuration step you'll need to take is configuring key-based authentication. Key-
based authentication allows a client to securely connect to a remote server without requiring the
client to provide a password, by instead relying on public-key authentication to verify the client's
identity.

Public-key cryptography works by generating a pair of keys, one public and another private, and
then transferring a copy of the public key to the remote server. When the client attempts to connect
to the remote server, the server will challenge the client by asking the client to generate a unique
signature using the private key. This signature can only be verified by the public key, meaning the
server can use this technique to verify that the client is allowed to connect. As you might imagine,
some fairly heady mathematics are involved in this process, and I'm not even going to attempt an
explanation; the bottom line is that configuring public-key authentication is quite useful because it

Easy PHP Websites with the Zend Framework 218

means you don't have to be bothered with supplying a password every time you want to SSH into
aremote server.

Configuring public-key authentication is also important when setting up Capistrano to automate the
deployment process, because otherwise you'll have to configure Capistrano to provide a password
every time you want to deploy the latest changes to your website.

Configuring Public-key Authentication on Unix/Linux

If you're running a Linux/Unix-based system, creating a public key pair is a pretty simple process.
Although | won't be covering the configuration process for Windows or OSX-based systems, |
nonethel ess suggest carefully reading this section asit likely won't stray too far from the stepsyou'll
need to follow. Start by executing the following command to generate your public and private key:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/hone/wjgilnore/.ssh/id_rsa)

Unlessyou have good reasonsfor overriding the default key name and location, go ahead and accept
the default. Next you'll be greeted with the following prompt:

Ent er passphrase (enpty for no passphrase):

Sometutorials promote entering an empty passphrase (password), however | discourage thisbecause
should your private key ever be stolen, the thief could use the private key to connect to any server
possessing your public key. Instead, you can haveyour cakeand eat it to by defining apassphraseand
then using a service called ssh-agent to cache your passphrase, meaning you won't haveto provideit
each time you login to the remote server. Therefore choose a passphrase which is difficult to guess
but one you won't forget.

Onceyou've defined and confirmed a passphrase, your public and private keyswill be created. You'll
next want to securely copy your public key to the remote server. Thisis probably easiest done using
thescp utility:

$ scp ~/.ssh/id_rsa.pub usernanme@ enot e: publ i ckey. t xt

You'll need to replace username and renot e with the remote server's username and address,
respectively. Next SSH into the server and add the key to the aut hor i zed_keys file:

$ ssh usernane@ enot e

$ nkdir ~/.ssh
$ chnod 700 . ssh

Easy PHP Websites with the Zend Framework 219

$ cat publickey.txt >> ~/.ssh/authorized_keys
$ rm ~/ publ i ckey. t xt
$ chnod 600 ~/.ssh/*

Y ou should now be able to login to the remote server, however rather than provide your account
password you'll provide the passphrase defined when you created the key pair:

$ ssh usernane@ enot e
Ent er passphrase for key '/home/wjgilnmore/.ssh/id_rsa':

Of course, entering a passphrase each time you login defeats the purpose of using public-key
authentication to forego entering a password, doesn't it? Thankfully, you can securely store this
passphrase using a program called ssh-agent, which will store your passphrase and automatically
supply it when the client connects to the server. Cache your passphrase by executing the following
commands:

$ ssh-agent bash

$ ssh-add

Ent er passphrase for /home/w gil nore/.ssh/id_rsa:

Identity added: /hone/w gilnore/.ssh/id_rsa (home/wgilnore/.ssh/id_rsa)

Try logging into your remote server again and thistimeyou'll bewhisked right to the remoteterminal,
with no need to enter your passphrase! However, in order to forego having to manually start ssh-
agent every time your client boots you'll want to configure it so that it starts up automatically. If
you happen to be running Ubuntu, then ssh-agent is already configured to automatically start. This
may not be the case on other operating systems, however in my experience configuring ssh-agent
to automatically start is a very easy process. A quick search should turn up all of the information
you require.

Deploying Your Website

With thesegeneral configuration stepsout of theway, it'stimeto ready your websitefor deployment.
You'll only need to carry out these steps once per project, all of which are thankfully quite
straightforward.

Thefirst step involves creating afile called capfi | e (no extension) which resides in your project's
home directory. The capfil e is essentially Capistrano's bootstrap, responsible for loading needed
resources and defining any custom deployment-rel ated tasks. Thisfilewill also retrieve any project-
specific settings, such as the location of the project repository and the name of the remote server
which hosts the production website. I'll explain how to define these project-specific settings in a
moment.

Easy PHP Websites with the Zend Framework 220

Capistrano will by default look for the capfi | e in the directory where the previously discussed cap
command is executed, and if not found will begin searching up the directory tree for the file. This
isbecauseif you are using Capistrano to deploy multiple websites, then it will make senseto define
asingle capfil e in your projects root directory. Just to keep things smple, | suggest placing this
filein your project home directory for now. Also, because we're using the Railsless Deploy gem to
streamline Capistrano, our Capfi | e looks atad different than those you'll find for the typical Rails
project:

require 'rubygens
require 'rail sl ess-depl oy
| oad 'config/deploy.rb

Notice the third line of the capfil e refersto afile caled depl oy. rb which resides in a directory
named confi g. This file contains the aforementioned project-specific settings, including which
version control solution (if any) is used to manage the project, the remote server domain, and the
remote server directory to which the project will be deployed, among others. The depl oy. rb file |
use to deploy my projectsis presented next, followed by a line-by-line review:

01 # What is the name of the | ocal application?

02 set :application, "gamenonad.w gil nore. cont

03

04 # What user is connecting to the renote server?
05 set :user, "wjgilnore"

06

07 # Where is the local repository?

08 set :repository, "file:///var/ww dev.w ganmes.cont
09

10 # What is the production server donmain?

11 rol e : web, "ganenomad. w gil nore. cont

12

13 # What renote directory hosts the production website?

14 set :deploy_to, "/ home/ wj gi | mor econf ganenomad. W gi | nor e. cont’
15

16 # |s sudo required to mani pulate files on the renote server?
17 set :use_sudo, false

18

19 # What version control solution does the project use?
20 set :scm igit

21 set :branch, ' mast er

22

23 # How are the project files being transferred?

24 set :deploy_via, :copy

25

26 # Maintain a | ocal repository cache. Speeds up the copy process
27 set :copy_cache, true

28

Easy PHP Websites with the Zend Framework 221

29
30
31
32
33
34
35
36
37
38
39
40
41
42

lgnore any |local files?
set :copy_exclude, %\V.git)

This task sym inks the proper .htaccess file to ensure the
production server's APPLI CATI ON_ENV var is set to production
task :create_syminks, :roles => :web do
run "rm #{current_rel ease}/public/.htaccess"
run "In -s #{current_rel ease}/ production/.htaccess
#{current _rel ease}/public/.htaccess"
end

After depl oynent has successfully conpl et ed
create the .htaccess syniink
after "deploy:finalize_update", :create_syminks

Because the depl oy. rb isamost certainly new to most readers, aline-by-line review follows:

Line 02 assigns a name to the application. While this setting is not strictly necessary in al
deployment cases, this particular deployment file requires you to define this setting because of
the particular deployment approach used on Lines 24 and 27. I'll talk about this approach and why
this setting is needed in a moment.

Line 05 defines the account name used to connect to the remote server. This user should logically
possess al of the rights necessary to copy and manipulate the project files on the remote server.

Line 08 defines the location of the project repository. It's possible to define a remote repository
location, for instance pointing to a GitHub-hosted project, however because I'd imagine most
readerswill want to deploy aproject which ishosted locally, | thought it most beneficial to present
an example of the syntax used to point to alocally-hosted project.

Line 11 defines the production server address. Capistrano will use this address when attempting
to connect to the remote server.

Line 14 defines the deployment destination's absol ute path.

Line 17 defines whether sudo must be used by the connecting user in order to carry out the
deployment. If you don't know what sudo is, then chances are high this should be set to f al se.

Line 20 defines the version control solution used to manage your project. Defining this setting
is necessary because it will determine how Capistrano goes about deploying the project. For
instanceif : scmissetto: gi t then Capistrano will use Git'scl one command to copy the project.
As mentioned earlier in this chapter Capistrano supports quite a few different version control
solutions. For instance, use : bzr for Bazaar, : cvs for CVS, :nmercurial for Mercuria, and

Easy PHP Websites with the Zend Framework 222

: subver si on for Subversion. If your project is currently not under version control, this can be
set to: none.

» Line 21 defines the repository branch you'd like to deploy. Repository branching is out of the
scope of this chapter, however if you are using version control and don't know what a branch is,
you can probably safely leave this set to mast er .

» Line24tells Capistrano how the files should be deployed to the remote server. The: copy Strategy
will cause Capistrano to clone the repository, archive and compress the cloned repository using
thet ar and gzi p utilities, and then transfer the archive to the remote server using SFTP. An even
more efficient strategy is: r enot e_cache, which will cause Capistrano to deploy only the latest
commitsrather than transfer theentire project. | suggest using: r enot e_cache if possible, however
I am using : copy in this example due to repeated issues I've encountered using : r enot e_cache.

» Line 27 enablesthe: copy_cache option, which will greatly speed the deployment process when
using the : copy strategy. Enabling this option will cause Capistrano to cache a copy of your
project (by default inthe/ t np directory), storing the cache in adirectory of the same name asthe
- appl i cati on setting. When set, at deployment time Capistrano will update this cache with the
latest changes before compressing and transferring it, rather than copy the entire repository.

» Line 30 tells Capistrano to ignore certain repository files and directories when deploying the
project. For instance, when using the : copy strategy the . gi t directory can be ignored because
there is no need for the remote server to have access to the project's repository history. Because
the. gi t directory can grow quite large over the course of time, excluding this directory from the
transfer process can save significant time and bandwidth.

» Lines 34-38 define a Capistrano task, which like a programmatic function defines a grouped
sequence of commands which can be executed using anamed alias: creat e_syni i nks). Thistask
isresponsible for setting the Zend Framework project APPLI CATI ON_ENV variable to pr oduct i on
by deletingtheoriginal . ht access filefoundinthetransferred project'spubl i ¢ directory, and then
creating a symbolic link from the publ i ¢ directory which points to a production-specific version
of the . ht access file residing in adirectory called producti on. You'll of course need to create
this directory and production-specific . ht access file, however the latter task is accomplished
simply by copying your existing . ht access file to a newly created product i on directory and
then modifying this file so that APPLI CATI ON_ENV iS Set to pr oduct i on rather than devel opnent .
It is this crucial step that will ensure your deployed Zend Framework application is using the
appropriate set of appl i cation. i ni configuration parameters.

e The :create_syminks task defined on lines 34-38 is just a definition; it won't execute
unless you tell it to do so. Execution happens on line 42, done by overriding Capistrano's

Easy PHP Websites with the Zend Framework 223

depl oy: final i ze_updat e task which will execute by default after the deployment process has
completed.

Whew, breaking down that deployment file was a pretty laborious task. However with depl oy. rb
in place, you're ready to deploy your website!

Readying Your Remote Server

As| mentioned at the beginning of this chapter, one of the great aspects of Capistrano is the ability
to rollback your deployment to the previous version should something go wrong. This is possible
because (when using the copy strategy) Capistrano will store multiple versions of your website on
the remote server, and link to the latest version via a symbolic link named cur rent which resides
in the the directory defined by the : depl oy_t o setting found in your depl oy. rb file. These versions
are stored in adirectory called r el eases, also located in the : depl oy_t o directory. Each versionis
stored in a directory with a name reflecting the date and time at the time the rel ease was deployed.
For instance, a deployment which occurred on February 24, 2011 at 12:37:27 Eastern will be stored
in adirectory named 20110224183727 (these timestamps are stored using Greenwich Mean Time).

Additionally, Capistrano will create a directory called shar ed which also residesinthe: depl oy_to
directory. Thisdirectory isuseful for storing custom user avatars, cache data, and anything else you
don't want overwritten when anew version of the websiteis deployed. Y ou can then use Capistrano's
depl oy: final i ze_updat e task to create symbolic links just as was done with the . ht access.

Therefore given my : depl oy_t o directory is set to / hone/ wj gi | nor e/ gamenonad. wj gi | mor e. com
the directory contents will look similar to this:

current -> /hone/w gil nore/ ganenonmad. w gi | nor e. con!
rel eases/ 20110224184826
rel eases
20110224181647/
20110224183727/
20110224184826/
shar ed

Note

If you start using Capistrano to deploy your Zend Framework projects, keep in mind that
you'll need to change your production website's document root to / pat h/t o/ current/
publ i c!

Easy PHP Websites with the Zend Framework 224

Capistrano can create the rel eases and shar ed directories for you, something you'll want to do
when you're ready to deploy your website for the first time. Create these directories using the
depl oy: set up command, as demonstrated here;

‘$ cap depl oy: setup

Deploying Your Project

Now comes the fun part. To deploy your project, execute the following command:

‘$ cap depl oy

If you've followed the instructions I've provided so far verbatim, remember that Capistrano will be
deploying your latest committed changes. Whether you've saved thefilesisirrelevant, as Capistrano
only cares about committed files.

Presuming everything is properly configured, the changes should be immediately available via
your production server. If something went wrong, Capistrano will complain in the fairly verbose
status messages which appear when you execute the depl oy command. Notably you'll probably
see something about rolling back the changes made during the current deployment attempt, which
Capistrano will automatically do should it detect that something has gone wrong.

Rolling Back Your Project

One of Capistrano's greatest featuresisits ability to revert, or rollback, a deployment to the previous
version should you notice something just isn't working as you expected. Thisis possible because as|
mentioned earlier in the chapter, Capistrano stores multiple versions of the website on the production
server, meaning returning to an earlier version is as simple as removing the symbolic link to the
most recently deployed version and then creating a new symbolic link which points to the previous
version.

To rollback your website to the previously deployed version, just use the depl oy: rol | back
command:

$ cap depl oy: rol | back

Reviewing Commits Since Last Deploy

Particularly when you're making changes to a project which aren't outwardly obvious, it can be
easy to lose track of what commits have yet to be deployed. You can review this list using the

Easy PHP Websites with the Zend Framework 225

depl oy: pendi ng command, which will return a list of log messages and other commit-related
information associated with those commits made since the last successful deployment:

$ cap depl oy: pendi ng
* executing " depl oy: pendi ng'
* executing "cat /honme/w gil norecom ganmenomad. W gi | more. com
/ current/REVI SI ON'
servers: ["gamenormad.w gil nore. cont']
[ganmenomad. wj gi | nore. con] executi ng conmand
command fi ni shed
commi t 0380f 960af 0db2b5d8cf b8893ch07caf 038c9754
Aut hor: Jason G | nore <wj @\ gi |l nore. con>
Dat e: Thu Feb 24 11:32:28 2011 - 0500

Added special offer widget to the hone page.

Test Your Knowledge

Test your understanding of the concepts introduced in this chapter by answering the following
guestions. Y ou can find the answers in the back of the book.

* Provide afew reasons why atool such as Capistrano is superior to FTP for project deployment
tasks.

e Describe in genera terms what steps you'll need to take in order to ready your project for
deployment using Capistrano.

Conclusion

Every so often you'll encounter a utility which can immediately improve how you go about cresting
and maintaining software. Capistrano is certainly one of those rare gems. Consider making your life
even easier by bundling Capistrano commands into a Phing (http://phing.info) build file, creating
a convenient command-line menu for carrying out repetitive tasks. | talk about this topic at great
length in the presentation "Automating Deployments with Phing, Capistrano and Liquibase”. You
can download the presentation slides and a sample build file via my GitHub project page: http:/
www.github.com/wjgilmore/.

Appendix A. Test Your
Knowledge Answers

This appendix contains the answers to the end-of-chapter questions located the section "Test Y our
Knowledge".

Chapter 1

Identify and describe the three tiers which comprise the MVC architecture.

TheMV C architecture consists of threetiers, including the model, view, and controller. Themodel is
responsible for managing the application's data and behavior. The view is responsible for rendering
the model in a format best-suited for the client interface, such as web page. The controller is
responsible for responding to user input and interacting with the model to complete the desired task.

How does the concept of "convention over configuration" reduce the number of development
decisions you need to make?

Convention over configuration is an approach to software design which attempts to reduce the
number of tedious implementational decisions a developer needs to make by assigning default
solutions to these decisions. How to best go about managing configuration data, validate forms data,
and structure page templates are all examples of decisions already made for you when using a web
framework which embraces this notion of convention over configuration.

Name two ways the Zend Framework helps you keep your code DRY.
Although the Zend Framework reduces code redundancy in a wide variety of ways, two ways

specifically mentioned in Chapter 1 include the ability to create and execute action helpersand view
helpers.

Chapter 2

What command-line tool is used to generate a Zend Framework project structure?

The command-line tool commonly used to generate a Zend Framework project and its constituent
partsis known as Zf.

Easy PHP Websites with the Zend Framework 227

What file should you never remove from the project directory, because it will result in the
aforementioned tool not working properly?

The zf command-line tool uses afile named . zf proj ect . xm to keep track of the project structure.
Removing or modifying thisfile will almost certainly cause zf to behave erratically.

What is a virtual host and why does using virtual hosts make your job as a developer easier?

A virtual host is a convenient solution for serving multiple websites from one web server.
Using virtual hosts on your development machine is particularly convenient because you can
simultaneously work on multiple projects without having to reconfigure or restart the web server.

What two files are found in the publ i ¢ directory when a new project is generated? What are the
roles of these files? What other types of files should you place in this directory?

A Zend Framework project's publ i ¢ directory contains an . ht access and i ndex. php file. The
. ht access fileisresponsible for rewriting all incoming requeststo thei ndex. php file, which serves
as the application's front controller. You'll also place CSS and JavaScript files in this directory, in
addition to your website images.

Chapter 3

The Zend Framework's convenient layout feature is not enabled by default. What ZF CLI command
should you use to enable this feature?

Execute the command zf enabl e | ayout to enable your project's layout file. Thisfileis stored by
default in the directory appl i cati on/ | ayouts/scripts andisnamed | ayout . pht m .

From which directory does the Zend Framework expect to find your website CSS, images, and
JavaScript?

The CSS, images, and JavaScript files should be placed in the publ i ¢ directory.

What is the name of the Zend Framework feature which can help to reduce the amount of PHP code
otherwise found in your website views?

View helpers are useful for not only reducing the amount of PHP code found in a view, but also
for helping to DRY up your code by abstracting layout-related logic which might be reused within
multiple areas of your website.

Which Zend Framework class must you extend in order to create a custom view helper? Where
should your custom view helpers be stored?

Easy PHP Websites with the Zend Framework 228

Custom view helpers should extend the zend_Vi ew_Hel per _Abstract class. They should be placed
inthe project'sappl i cati on/ vi ews/ hel per s directory.

Name two reasonswhy the Zend Framework's URL view hel per is preferable over manually creating
hyperlinks?

The native URL view helper is convenient because it can dynamically adapt the URL in accordance
with any changes made to the website structure. Additionally, URL helpers can refer to a custom
route definition rather than explicitly naming a controller or action.

Chapter 4

Which Zend Framework component is primarily responsible for simplifying the accessibility of
project configuration data from a central location?

The Zend_Config component is the primary vehicle used for accessing a Zend Framework project's
configuration data.

What is the name and location of the default configuration file used to store the configuration data?

Although it's possible to store a Zend Framework project's configuration data using a variety of
formats, the default solution involves using an INI-formatted file named appl i cati on. i ni stored
in the directory appl i cati on/ confi gs.

Describe how the configuration data organized such that it is possible to define stage-specific
parameters.

The application.ini fileisbroken into multiple sections, with each section representative of a
lifecycle stage. These sections areidentified by the headers| pr oduct i on] , [st agi ng: pr oduct i on] ,
[testing: production], and [devel opnent : producti on] . The latter three stages inherit from the
product i on stage, asisindicative by the syntax used to denote the section start.

What is the easiest way to change your application's lifecycle stage setting?

Although the Zend Framework's APPLI CATI ON_ENV can be set in avariety of ways, the most common
approach involves setting it in the . ht access file.

Chapter 5

Name two reasons why the Zend_Form component is preferable to creating and processing forms
manually.

Easy PHP Websites with the Zend Framework 229

Although one could cite dozens of reasons why the Zend Form component is preferable to creating
and processing formsmanually, two particularly prominent reasonsinclude the ability to encapsul ate
aform's components and behavior within amodel, and the ease in which form fields can be validated
and repopul ated.

How does the Flash Messenger feature streamline a user's website interaction?

The Flash Messenger isuseful becausethe devel oper can create amessage which should be presented
to the user following the compl etion of a specific task, such as successfully registering or logging in,
and then present this message on a subsequent page, thereby streamlining the number of interactions
auser needs to make in order to navigate the website.

What isthe role of PHPUnit's data provider feature?

PHPUnit's data provider feature is useful for vetting various facets of a particular website feature by
repeatedly executing atest and passing in a different set of test data with each iteration.

Chapter 6

Define object-relational mapping (ORM) and talk about why its an advantageous approach to
programmatically interacting with a database.

Object-relational mapping provides a solution for interacting with a database in an object-oriented
fashion, thereby reducing and possibly entirely eliminating the need to inconveniently mingle
incompatible data structures.

Given a model named Appl i cati on_Model _DbTabl e_Garre, What will Zend Db assume to be the
name of the associated database table? How can you override this default assumption?

Givenamodel named Appl i cat i on_Model _DbTabl e_Gane, the Zend_Db component will assumethe
associated database table is named gane. Y ou can override this assumption by defining a protected
property named nane in your model.

What are the names and purposes of the native Zend Db methods used to navigate model
associations?

ThefindPar ent Row() method is used by a child to retrieve information about its parent row. The
fi ndDependent Rowset () method isused by a parent to retrieve information about its children rows.

Chapter 7

Talk about the advantages Doctrine provides to developers.

Easy PHP Websites with the Zend Framework 230

Doctrine offers quite a few powerful advantages, including notably a mature object-relational
mapper, a database abstraction layer, and a powerful command-line tool. Its possible to identify
standard PHP classes as persistent through a simple configuration process, thereby greatly reducing
the amount of code a developer would otherwise have to write to implement persistence features.

Talk about the different formats Doctrine supports for creating persistent objects.

Doctrine can marry PHP objects and the underlying database using DocBlock annotations, xw., and
yAmL. DocBlock annotations are the author's preferred approach, although any of the three will work
just fine.

What are DocBlock annotations?

DocBlock annotations allow developers to define a standard PHP class as persistent by embedding
metadata within PHP comment blocks. These annotations are used to define the mapping between
aclass properties and the associated SQL type, specify primary keys, and define associations.

What is DQL and why isit useful ?

The Doctrine Query Language (DQL) is a query language useful for querying and interacting with
your project's object model. DQL is useful because it alows the developer to mine data which
continuing to think in terms of objects rather than in SQL.

What is QueryBuilder and why isit useful?

The QueryBuilder is an API which provides developers with a means for rigorously constructing
aDQL query.

Why is it a good idea to create a custom repository should your query requirements exceed the
capabilities provided by Doctrine's magic finders?

Custom repositories provide a convenient way to encapsul ate your custom data-access featuresin a
specific location rather than polluting the domain entities.

Chapter 8

Explain how Zend_Auth knows which table and columns should be used when authenticating a user
against a database.

The Zend Auth component includes an adapter named zend_Aut h_Adapt er_DbTabl e which
supports methods used to map the adapter to a specific database table, and identify the table

Easy PHP Websites with the Zend Framework 231

columns used store the account username and password. These methods include set Tabl eNare() ,
set | dentityCol um(), and set Credent i al Col unn() , respectively.

At aminimum, what arethefivefeaturesyou'll need to implement in order to offer basic user account
management capabilities?

The five fundamental account management features include account registration, account login,
account logout, password update, and password recovery.

Talk about theimportant role played by theaccount table'sr ecovery columnwithin several features
described within this chapter.

Theaccount table'srecovery columnisused for uniqueidentifiers which serveto create a one-time
URL. A one-time URL is sent to anewly registered user's e-mail address. When clicked, the unique
identifier will be compared against the database in order to confirm the account.

Chapter 9

Why should you link to the jQuery library via Google's content distribution network rather than
store a version locally?

Linking to the jQuery library via Googl€e's content distribution network will greatly increase the
likelihood that the library is already cached within a user's browser, thereby reducing the amount of
bandwidth required to serve your website.

What roledoesjQuery'ss. get JSONmethod play in creating the Ajax-driven featurediscussed earlier
in this chapter?

The $. get JSON method is useful for asynchronously communicating with aremote endpoint viaan
HTTP GET request.

Chapter 10

Why isit awiseidea to use PHP's CLI in conjunction with scripts which could conceivably run for
a significant period of time?

When using PHP scriptsto execute batch processes, using the command-lineinterface (CLI1) isawise
idea because CLI-based PHP scripts do not take PHP's max_execut i on_t i me Setting into account.
Additionally, CLI-based scripts can be automatically executed using a scheduling daemon such as
CRON.

Easy PHP Websites with the Zend Framework 232

What two significant improvements does the Google Maps API V3 offer over its predecessor?
The Google Maps API V3 offers several improvements over its predecessor, however two of the
most notable changes include the removal of the API key requirement and the streamlined syntax

which greatly reduces the amount of code otherwise required to implement key features such as map
customization and marker display.

Chapter 11

Define unit testing and talk about the advantages it brings to your development process.

Unit testing provides devel operswith atool for formally and rigorously determining whether specific
parts of an application's source code behave as expected. Using an automated unit testing tool is
advantageous because a suite of tests can be created, managed and organized in an efficient manner.

What Zend component and open source PHP project work in conjunction with one another to bring
unit testing to your Zend Framework applications?

PHPUnNIt and the Zend Framework's Zend Test component work together to bring unit testing
features to your Zend Framework projects.

What is the name of the syntactical construct used to validate expected outcomes when doing unit
testing?

Expected outcomes are confirmed using assertions.
Why are code coverage reports useful ?

Code coverage reports are useful because they provide developers with a valuable tool for
determining how many lines of a project have been "touched" by unit tests.

Chapter 12

Provide afewreasonswhy atool such as Capistranoissuperior to FTP for project deployment tasks.

Capistrano is superior to FTP because Capistrano is faster, more secure, and able to automatically
revert awebsite to itslast known good state should a problem occur during the deployment process.
Additionally, the developer can manually revert a website to its previous state should he detect a
problem following deployment.

Easy PHP Websites with the Zend Framework 233

Describein general termswhat stepsyou'll need to takein order toready your project for deployment
using Capistrano.

After installing Capistrano (and optionally Raildess-deploy), and configuring shared-key
authentication, you'll want to create a Capfile and a deployment file (which contains the project's
deployment configuration settings). Before deploying your project you'll want to ready the
deployment server by executing Capistrano's depl oy: set up command. Finally, when ready to
deploy you'll execute the depl oy command.

	Cover
	Table of Contents
	Introduction
	Chapter 1. IntroducingFramework-Driven Development
	Chapter 2. Creating Your FirstZend Framework Project
	Chapter 3. Managing Layouts,Views, CSS, Images andJavaScript
	Chapter 4. ManagingConfiguration Data
	Chapter 5. Creating Web Formswith Zend_Form
	Chapter 6. Talking to theDatabase with Zend_Db
	Chapter 7. Chapter 7. IntegratingDoctrine 2
	Chapter 8. Managing UserAccounts
	Chapter 9. Creating Rich UserInterfaces with JavaScript andAjax
	Chapter 10. Integrating WebServices
	Chapter 11. Unit Testing YourProject
	Chapter 12. Deploying YourWebsite with Capistrano
	Appendix A. Test YourKnowledge Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11&12

